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Abstract
Background:
This study explores the interaction between expert Java developers and ChatGPT,
focusing on the process of code refactoring—improving the internal structure of code
without altering its external behavior.

Research Objective:
The main aim is to uncover the benefits and drawbacks of using ChatGPT for code
refactoring tasks among professional Java programmers.

Research Method:
A combination of practical experiments and interviews was utilized. Programmers
were tasked with refactoring code using ChatGPT, followed by discussions on their
experiences to gather insights.

Results:
Results indicated that ChatGPT can significantly streamline the refactoring pro-
cess, improving both the e�ciency and quality of code. However, limitations were
observed in ChatGPT’s ability to fully understand complex, specific project require-
ments, which could lead to less than optimal refactoring suggestions.

Conclusion:
While ChatGPT o↵ers valuable assistance in code refactoring, merging the precision
of manual techniques with automated tool e�ciency, it falls short in certain areas.
These shortcomings highlight the need for further refinement in its understanding
of project-specific details.

Future Work:

Future research should aim at enhancing ChatGPT’s adaptability to specific project
contexts and expanding its capability to assist with a broader range of refactoring
tasks.
Keywords: Code Refactoring, Java Programmers, ChatGPT, Artificial

Intelligence, Software Engineering
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1 Introduction

In the realm of software development, code refactoring stands as a cornerstone pro-
cess, facilitating the enhancement of code aesthetics while preserving its function-
ality. By bolstering code extensibility, maintainability, and readability, refactoring
plays a pivotal role in ensuring the long-term viability of software projects. Never-
theless, the manual execution of refactoring tasks often proves to be labor-intensive
and prone to errors.
Driven by the burgeoning interest in harnessing AI-powered tools within software

development, particularly for code refactoring, this research embarks on a journey
to explore the potential of such technology. While existing literature recognizes AI’s
merits across various programming domains, there remains a notable gap in under-
standing its specific impact on expert Java programmers engaged in code refactor-
ing. Delving into the experiences of these seasoned developers promises valuable
insights into AI’s capacity to support and enhance real-world software development
endeavors.
This study sets out to illuminate the role of AI in the intricate process of code

refactoring, with a particular focus on ChatGPT—a cutting-edge AI tool. By dis-
secting how ChatGPT can empower and assist expert Java programmers in their
refactoring pursuits, this research aims to unearth practical implications that will
enrich the collective understanding of AI’s e�cacy in refining code structures.

1.1 Background and Motivation

Restructuring current code to make it more aesthetically pleasing while maintaining
its functionality is known as code refactoring.[1] It is an essential component of
software development since it can enhance the extensibility, maintainability, and
readability of the code. On the other hand, manual refactoring can be a laborious
and error-prone process.
The motivation for conducting this research stems from the growing interest in

using AI-powered tools like ChatGPT in software development, specifically for code
refactoring tasks. While there is existing literature on the benefits of AI in vari-
ous programming domains, there is a lack of specific studies that focus on expert
Java programmers and their experiences with ChatGPT for code refactoring. Un-
derstanding the advantages and challenges faced by these skilled developers will
provide valuable insights into the potential of AI assistance in real-world software
development scenarios.
Ultimately, the findings from this study will contribute to a better understanding
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1 Introduction

of the role of AI in code refactoring and inform the software development community
about the practical implications of using ChatGPT as a tool to support and empower
expert Java programmers in their code refactoring endeavors.

Figure 1.1: Expert programmers vs ChatGPT
[5]

1.2 Problem Statements

The potential of large language models (LLMs) such as ChatGPT to help software
engineers with di↵erent jobs is growing as these models get more and more sophis-
ticated. Code refactoring is one such process that entails enhancing the readability
and structure of code without a↵ecting its usefulness. It’s still uncertain how useful
ChatGPT is for code refactoring , especially for Java programmers, in terms of its
restrictions and usefulness. In Figure 1.1, we can see an imaginary sample scenario
illustrating the problem.

1.3 Research Objectives

The primary objective of this research is to assess how ChatGPT aids expert Java
programmers in refining their code refactoring techniques. By analyzing code snip-
pets, we will examine how developers employ ChatGPT’s suggestions and guidance
to optimize their refactoring process. Through interviews, we will gain in-depth
insights into the specific ways ChatGPT contributes to their improvement in refac-
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1 Introduction

toring practices. A significant aspect of this study is to quantify the impact of
ChatGPT on the participants’ productivity during code refactoring tasks.
By comparing the time taken to complete refactoring tasks with and without

ChatGPT, we will determine if the tool accelerates the refactoring process. The
findings will provide valuable information on how ChatGPT influences the e�ciency
of expert Java programmers, enabling them to produce higher-quality code in a
shorter time frame. Alongside the advantages, this research aims to uncover the
challenges expert Java programmers encounter when integrating ChatGPT into their
code refactoring workflow.
Through interviews, participants will have the opportunity to express their con-

cerns, limitations, and areas where ChatGPT may fall short of meeting their expec-
tations. Understanding these challenges will facilitate the development of strategies
to address them and optimize the use of ChatGPT in code refactoring processes. By
conducting this study, we aim to shed light on how ChatGPT can positively impact
the code refactoring process for expert Java programmers.
We want to explore the extent to which ChatGPT can enhance their productivity,

enable them to discover new refactoring techniques, and improve the maintainability
of their code. Additionally, the research aims to identify any potential limitations
or challenges faced by these programmers when integrating AI assistance into their
workflow.

1.4 Research Questions

To study this approach the following research questions should be answered:

1. Research Question - How do java expert programmers use ChatGPT to
refactor code?

2. Research Question - How do java expert programmers describe ChatGPT’s
impact on their productivity and code maintainability?

3. Research Question - What perceived benefits and challenges do expert Java
programmers encounter when using ChatGPT for code refactoring tasks?

13



1 Introduction

1.5 Thesis outline

Embarking on this academic quest, here’s the roadmap: my thesis outline.
Chapter 1 (Introduction):
Introduces the thesis work, highlighting the objectives, research questions, signifi-
cance, limitations, and the overall structure of the thesis.

Chapter 2 (Literature Review):
Provides an overview of previous studies relevant to the use of AI in code refactor-
ing, including discussions on program comprehension, programming structures, and
methods for testing comprehension, with a focus on Java programming.

Chapter 3 (Related Work):
Explores existing tools and approaches related to AI-driven code refactoring, exam-
ining their strengths, weaknesses, and applicability to the context of expert Java
programmers.

Chapter 4 (Methodology):
Details the research design, including the approach to integrating ChatGPT into
Java development environments, the philosophy guiding the research, methods for
data collection and analysis, and any limitations inherent in the chosen methodology.

Chapter 5 (Experiment Process):
Describes the process of conducting experiments with ChatGPT in the context of
code refactoring tasks performed by expert Java programmers. This includes the
setup, execution, and any adjustments made during the experimental phase.

Chapter 6 (Results):
Presents the findings of the experiments, detailing how ChatGPT performed in as-
sisting with code refactoring tasks, including metrics such as review time, detection
of code smells, and e↵ectiveness in suggesting refactorings.

Chapter 7 (Discussion):
Analyzes the results, discussing the implications of ChatGPT’s performance for ex-
pert Java programmers, highlighting strengths, weaknesses, and areas for improve-
ment.

Chapter 8 (Conclusion):
O↵ers a conclusion based on the findings, summarizing the e↵ectiveness of Chat-
GPT as a tool for supporting code refactoring in Java development. Additionally,
discusses potential future research directions and applications of AI in software en-
gineering.
This shortened outline encapsulates the essence of each chapter, focusing on the key
points and objectives of my thesis.
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2 Theoretical background

The Theoretical background of this thesis explores the concept of code refactoring
within software engineering—a practice aimed at enhancing the internal structure
of code without altering its external functionality. This section reviews the evo-
lution of code refactoring, highlighting its importance in maintaining high-quality,
readable, and maintainable software. It delves into various methodologies, from
manual to automated refactoring, and discusses the impact of these practices on
developer productivity and software project lifecycles. Additionally, it introduces
the emerging trend of AI-assisted refactoring, examining its potential to revolution-
ize traditional refactoring processes by automating complex tasks and improving
decision-making. This comprehensive overview sets the stage for understanding the
role of code refactoring in contemporary software development and its implications
for future research.

2.1 Code Refactoring

Code refactoring is a disciplined method aimed at improving the internal structure of
existing code while preserving its external behavior. The essence of code refactoring
lies in its capacity to make software more maintainable, extensible, and readable
without introducing new functionality. This process is crucial for managing software
complexity, enhancing code quality, and facilitating future development e↵orts.
The core principles guiding code refactoring include improving the readability and

comprehensibility of code, reducing complexity, eliminating redundant or duplicate
code, and, in some instances, optimizing performance. Techniques such as ”Extract
Method,” ”Rename Variable/Method,” ”Move Method/Class,” and ”Inline Method”
are commonly employed to address specific issues within the codebase, ranging from
simplifying complex code segments to enhancing code modularity and clarity.
It’s impossible to say enough about how important code refactoring is in software

development. It is a key part of keeping the program clean, lowering technical debt,
and making sure that software can adapt to new needs and changes in the future.
By following the rules and methods of code refactoring, developers can make sure
that their code stays strong, e�cient, and simple to manage. This helps software
projects succeed and last for a long time.
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2 Theoretical background

2.1.1 How it works?

Fowler et al., [2] said that, Refactoring is basically the object-oriented variant of
restructuring: “the process of changing a software system in such a way that it does
not alter the external behavior of the code, yet improves its internal structure”.
Fowler also talked about bad smells, which are signs that there is a problem in the
code that needs to be fixed by refactoring. There are a lot of tools that can help
you find the bad smells and get rid of them by using refactoring tools and techniques.

There are seven descriptions of the steps involved in refactoring.[5]
1. Execute the program to verify that, upon refactoring, its external behavior has
not changed.
2. Determine the program’s complexity before doing any refactoring.
3. Determine which areas of the code need to be refactored. Choose the refactoring
to apply to the highlighted areas.
4. Make a small change, such as a single refactoring, without a↵ecting the code’s
external behavior.
5. Test the refactored code; if it functions as intended, proceed to the next refac-
toring.
6. If unsuccessful, undo the most recent, small change and carry out the refactoring
in a di↵erent way.
7. After using every refactoring strategy, compute the complexity to ascertain how
refactoring a↵ects quality. [5]

2.1.2 Principles of Code Refactoring

Refactoring preserves the functionality of the code while making it clearer, easier to
comprehend, and easier to maintain. There are five principles describe by Tomasz
[6]. For Examples:
1.Hide ”how” with ”what”: This concept says to focus on how something works
instead of how it’s implemented. Instead of getting bogged down in specific imple-
mentation details, give variables, functions, and classes names that are clear and
tell you what they do. Imagine code that reads like a story, with each function and
variable making its purpose clear without you having to think about the specifics of
how it was implemented.
2.Aim for consistency: This concept encourages our codebase to be consistent.
Maintain consistent naming practices, coding style, and formatting. Think of it as
creating a common language within your code. Formatting that is always the same
makes code easier to read, makes it easier for developers to navigate, and makes
upkeep easier because everyone knows the standard patterns.
3.Avoid deep nesting: This principle aims to make control structures less com-
plicated. Having a lot of nested loops or conditional lines in our code can make
it hard to understand and fix. Instead, break up complicated logic into functions
that are easier to handle. Picture a clear structure of functions, each one handling

16



2 Theoretical background

Figure 2.1: Refactoring steps
[5]
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a di↵erent subtask, instead of a single, confusing block of nested logic.
4.Separate concern (Single Responsibility Principle): This principle stresses
the use of modules. There should be a clear goal for every method, class, and mod-
ule. Putting di↵erent unrelated jobs on the same class makes it harder to use and
increases the chance that changes will a↵ect functions that are not related. We can
think of functions and classes as di↵erent experts, each with their own special skill,
working on the same project.
5.Avoid duplication wisely (Don’t Repeat Yourself): This concept encour-
ages code reuse. If we see the same thinking used more than once, don’t just copy
and paste it. We should instead make a function or class that holds that reasoning.
This cuts down on duplicate code, makes upkeep easier (since changes made in one
place a↵ect all uses), and organizes the code better overall. Imagine having a central
library of reusable parts instead of versions that are spread out and might not work
together.
Good methods for refactoring code are based on these five rules. If we follow them,
you can write code that works well, is clean, easy to read, easy to manage, and can
be changed in the future. Remember that these principles are not hard and fast
rules. Instead, they are suggestions that we can use to make your project and team
work better. [6]

2.1.3 Types of Code Refactoring

In the book, Fowler [6] introduces several refactoring techniques, and the list in-
cludes over 70 refactoring. We are going to describe six important techniques.For
example:
1.Extract Method:
Purpose: Reduces a long or complex technique to smaller, more manageable steps,
enhancing readability and maintainability.
Process: Identify a code portion within a method that performs a certain task.
Create a new method with a suitable name to encapsulate this code. Replace the
existing code with a call to the new method.
2.Inline Method:
Purpose: Reduces code complexity by deleting methods that are tiny, used only
once, and do not provide considerable abstraction.
Process: Identify a method that fits the criteria for inlining. Replace any calls to
the method with its real content. Remove the method declaration.
3.Move Method:
Purpose: Moves a method to a more appropriate class, increasing cohesion and de-
creasing coupling.
Process: Identify a method that primarily interacts with data and methods from
another class. Relocate the method to the appropriate class and update any refer-
ences to it.
4.Pull-Up Method:
Purpose: Removes code duplication by relocating a method used by numerous sub-
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classes to a single superclass.
Process: Identify a method that is identical across numerous subclasses. Move the
method to the superclass, ensuring that it can still access the required data.
5.Push-Down Method:
Purpose: Encourages encapsulation and minimizes needless dependencies by relo-
cating a method used only by one subclass to that subclass.
Process: Identify a method in a superclass that is exclusively utilized by specific
subclasses.Move the method to the appropriate subclass and update any references.
6.Rename method:
Purpose: To improve code clarity and communication, give a method a more de-
scriptive or correct name.
Process: Find a method with an incorrectly named identifier. Change its name to
one that more accurately describes its purpose or capabilities. Use these strategies
wisely to improve code quality, maintainability, and adaptability.

Extract
Method

Inline
Method

Move
Method

Pull-Up
Method

Push-
Down
Method

Rename
Method

Add Combine Move Move Move Change
Create Gather Add Pull Push Fix
Extract Inline Shift Reduce Improve
Move Merge Remove Rename
Separate Move Update
Split
Break Up

Table 2.1: Relevant Features per Method
[8]

2.1.4 Refactoring example

By simplifying the conditional phrases, the code becomes more compact while re-
maining clear and readable.Here is a simple example of java code refactoring.
In Figure 2.2, The code is functionally accurate, however it might be reduced to

improve readability and conciseness. Here is an improved version of the code in
figure 2.3.
The technique of this code refactoring are:

Simplifying conditional expressions: The if-else loop inside the isEven method
is reduced to a single return statement by utilizing the condition num% 2 == 0.
This avoids the requirement for explicit if and else blocks when the result is a
boolean.
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Figure 2.2: Before Code refactoring

Figure 2.3: After Code refactoring
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Using Ternary Operators in the Main Method: In the main method, the con-
ditional check is replaced by a ternary operator, which is a more compact approach
to express a conditional statement. This results in a more concise and streamlined
representation of the logic.

2.1.5 Benefits of refactoring

Refactoring has various benefits in software development, including increased code
quality, maintainability, and developer e�ciency. Refactoring has several significant
benefits, including improved code readability and understandability, the elimination
of code duplication, the elimination of code smells, the improvement of maintain-
ability, bug fixing and troubleshooting, and more. Kim et al.[9] surveyed 328 pro-
fessional software engineers at Microsoft, conducted interviews with six members of
a team responsible for refactoring Windows 7, and performed a quantitative analy-
sis of the Windows 7 version history in one of the most comprehensive refactoring
field studies to date. This survey reported that restructuring improves readability
(43%), maintainability (30%), extensibility (27%), and reduces defects (27%). Poor
readability was the most common cause for refactoring (22%) of respondents). Only
one ’o�cial ’ code smell was mentioned: code duplication (13%).[9]

2.2 Chat GPT

ChatGPT represents a significant advancement in artificial intelligence, integrating
technologies like deep learning and reinforcement learning across versions from GPT-
1 to GPT-4. It has evolved to handle a wide range of tasks with minimal fine-tuning,
demonstrating remarkable generalization capabilities, especially in GPT-3, which
features a parameter scale 100 times larger than its predecessor. The InstructGPT
version, built on GPT-3.5, aims for better user interaction through reinforcement
learning with human feedback. In the realm of programming, ChatGPT o↵ers sub-
stantial benefits, such as enhancing computational thinking and providing debugging
assistance, thereby improving learning outcomes in programming education.

2.2.1 Overview of Chat GPT

With ChatGPT, artificial intelligence has taken a giant leap forward.ChatGPT is a
comprehensive system that combines several advanced technologies like deep learn-
ing, unsupervised learning, instruction fine-tuning, multi-task learning, in-context
learning, and reinforcement learning. The model is based on the original GPT (Gen-
erative pre-trained Transformer) model, which has undergone iterative updates from
GPT-1 to GPT-4.[11]

GPT-1 [16], which was created in 2018, is first used to train an unsupervised learning
model for a Transformer-based generative language model [16, 17, 18]. The model
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is then fine-tuned on tasks that come after it has been trained. The 2019 release
of GPT-2 [19] mostly introduces the idea of multi-task learning [23]. It trains with
more network parameters and data than GPT, which means that the pre-trained
generative language model can be used for most of the supervised subtasks with-
out needing any more tweaking. GPT-3 [22] combines meta-learning [23, 24] with
in-context learning [28] to make the model even better at few-shot or zero-shot
[21]settings. This makes the model much better at generalization, beating most
existing methods on a wide range of downstream tasks. Also, GPT-3’s parameter
scale is 100 times bigger than GPT-2’s, and it is the first language model to have
a parameter scale greater than 100 billion. InstructGPT is a pilot version of Chat-
GPT. It is a derivative version of the GPT3.5 series models.

The researchers use reinforcement learning with human feedback (RLHF) to train
the GPT-3 model[26] over time so that it can better understand what the user is
trying to say. Finally, ChatGPT performs at a human-level on a number of pro-
fessional and academic benchmarks when it comes to GPT-4, a large multimodal
model that can take both picture and text inputs and send text outputs.

2.2.2 Training Methodology

The training operation of ChatGPT consists of multiple stages. Initially, the user
inputs a query or commands a program. The response generated by the model is
predicated on its comprehension of the linguistic connections and patterns evident in
the given prompt. The user is subsequently provided with an additional opportunity
to provide a response or present an additional inquiry. This methodology exclusively
employs reinforcement learning in conjunction with human feedback showing in fig-
ure 2.4.[15] They consist of:
a) The SFT Model is trained using demonstration data collected.
b) The RM Model provides points based on the appeal of the SFT Model’s output
to consumers and
c)The SFT model using PPO is adjusted by using reinforcement learning to maxi-
mize the RM. PPO stands for the refined version of the proximal policy optimization
model.[15]

2.2.3 Advantages of Chat GPT

Although Chat GPT is used in a wide range of industries, we will focus on the pro-
gramming industry since this is where its e↵ects are most evident. Research indicates
that generative AI tools like ChatGPT improve students’ computational thinking,
programming self-e�cacy, and motivation.[27] According to Chen et al.,[28] stu-
dents’ programming abilities can be e↵ectively improved through the tools like Chat-
GPT, which o↵ers advantages including debugging and code explanations.
Here are some benefits that ChatGPT can o↵er to individuals looking to learn pro-
gramming. ChatGPT can communicate with individuals through natural language
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Figure 2.4: RLHF Training Method of ChatGPT
[15]

processing technologies. This allows users with little programming experience to
solve programming challenges using ChatGPT. [29]
Easy Access: ChatGPT is accessible from any device with an internet connection.
Users are not required to install any specialized software or tools. ChatGPT gives
consumers with rapid input with its quick response feature. This can accelerate the
learning process and improve pupils’ comprehension.
Personalized Learning: ChatGPT can o↵er consumers a customized learning ex-
perience. It can give users learning materials, practices, or examples, monitor the
learning process, and deliver personalized feedback.
Supports multiple languages: This enables anyone who want to learn program-
ming to communicate with ChatGPT in their own language.
Limitless Resources: By leveraging the huge resources of the internet, ChatGPT
can supply users with a limitless amount of programming resources. These resources
contain study materials, code samples, online courses, apps, and more.
Clear Explanations: ChatGPT o↵ers students clear explanations of programming
topics. It improves students’ understanding of the topics while also allowing them
to spend less time.
Examples and Applications: ChatGPT provides students with programming ex-
amples and applications, allowing them to put theoretical knowledge into practice.
This improves students’ understanding of the material and their overall learning
experience.
Inquiry and Search: ChatGPT allows students to ask questions and look up pro-
gramming subjects. This allows students to conduct research and learn more about
areas of interest to them.
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Debugging and Feedback: ChatGPT helps students detect and correct program-
ming problems. It also provides feedback to students and can make recommenda-
tions for better programming practices.
Advanced topic: ChatGPT assists students in progressing to more higher levels of
programming. Students can progress to more sophisticated levels of programming.[29]

2.2.4 Disadvantages of Chat GPT

According to Rahman et al.,[30] while ChatGPT provides some advantages in pro-
gramming learning, it also has disadvantages such as a lack of common sense, po-
tential biases, di�culties with complicated thinking, and inability to process visual
information. Here are some of the limitations.[29]
Lack Understanding of Context: There is no history of past conversations in
ChatGPT.Based on the current context given in the conversation, it creates re-
sponses.This can make it di�cult to have a meaningful and relevant discourse, par-
ticularly when talking about intricate programming subjects that require several
messages.
Limited Code Execution: ChatGPT lacks the capacity to run or test code; it
can only comprehend and produce code snippets.While syntactically correct code
may be produced, functional accuracy and e�ciency may not always be guaranteed.
Dependency on training Data: The quality of the model depends on the quality
of the training data.It might not be as adept at giving precise information or help in
certain areas if it wasn’t trained with a particular programming language, library,
or framework.
Ambiguity Di�culties: It may be di�cult for ChatGPT to handle unclear ques-
tions or requests for explanation.Incomplete code snippets or ambiguous program-
ming questions could result in answers that are neither precise nor beneficial.
Unable to Manage unseen Concepts:It’s possible that the model is out of date
with respect to the newest libraries, technologies, or programming languages re-
leased after the previous training cuto↵.It might not be able to o↵er guidance or
information on these more recent ideas.
Security Issues: Because ChatGPT can generate responses based on the input it
gets, if it isn’t carefully checked by a human, it may unintentionally deliver insecure
code or recommend behaviors that could result in security issues.
Not a Replacement for Human Expertise: Although ChatGPT can be a use-
ful tool for quickly obtaining information or advice, it shouldn’t be used in place
of the knowledge of seasoned programmers or other experts.For the solutions to be
accurate and secure, human oversight is necessary.
Excessively Wordy Reactions: The model may produce lengthy or too complex
responses, particularly in situations where a short code snippet or explanation would
be su�cient. Because of this, it could be di�cult to glean the most pertinent details
from the model’s answers.[29]
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This chapter examines the landscape of research and practice in the domain of
code refactoring, providing a critical review of existing methodologies, tools, and
approaches. It situates the current study within the broader academic and practi-
cal discourse on enhancing software quality and developer e�ciency through code
refactoring.

3.1 Existing Approaches to Code Refactoring

Code refactoring is a cornerstone of software maintenance and evolution, aiming
to improve the internal structure of software without altering its external behavior.
This section delves into various approaches to code refactoring, ranging from manual
techniques to automated solutions, highlighting the contributions and limitations of
each.

3.1.1 Manual Refactoring

Manual refactoring, as described by Fowler in his seminal work Refactoring: Improv-
ing the Design of Existing Code [33], remains the foundational approach. It relies
on the developer’s insight to identify ’code smells’ and apply appropriate refactoring
patterns. While o↵ering precision and control [43] ,this approach demands a high
level of expertise and can be time-consuming and error-prone [43].

3.1.2 Automated Refactoring Tools

The advent of automated refactoring tools has significantly impacted the practice of
code refactoring. Tools such as JRefactory and ReSharper leverage static analysis
to identify refactoring opportunities and execute transformations [35]. While these
tools increase e�ciency and reduce human error, they may not always grasp the
nuanced context of the code, leading to suboptimal refactoring suggestions [40].

3.1.3 AI-assisted Refactoring

Recent advancements in artificial intelligence have paved the way for AI-assisted
refactoring, promising to combine the precision of manual refactoring with the ef-
ficiency of automated tools. Techniques leveraging machine learning algorithms
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can predict refactoring opportunities by learning from large codebases [36]. For in-
stance, DeepCode uses deep learning to analyze code and suggest improvements [37].
However, the e↵ectiveness of these approaches heavily depends on the quality and
diversity of the training data, and there remains a gap in understanding complex,
project-specific requirements .

3.1.4 Hybrid Approaches

Recognizing the strengths and weaknesses of both manual and automated methods,
hybrid approaches have emerged. These approaches integrate human expertise with
the computational power of tools to guide the refactoring process. Studies such as
the one conducted by Murphy-Hill et al. [39] illustrate how developers can e↵ec-
tively collaborate with tools to achieve optimal refactoring outcomes, ensuring both
e�ciency and context-awareness.

3.1.5 Community and Collaborative Refactoring

The role of the developer community and collaborative platforms in refactoring
cannot be overlooked. Open-source projects and coding platforms like GitHub pro-
vide fertile ground for collaborative refactoring practices, where peer reviews and
contributions enhance code quality across projects [42]. This collective intelligence
approach leverages the diverse expertise within the community to identify and im-
plement best refactoring practices.

3.2 Previous Studies on Code Refactoring with AI

Almeida, Yonatha, et al.[31] conducted a thorough investigation into the e�cacy of
integrating artificial intelligence, specifically leveraging a plugin designed for IntelliJ
IDEA and powered by GPT-3.5, aimed at enhancing code review processes by au-
tonomously identifying both syntactical and semantic issues within code segments
and providing actionable solutions. Throughout their study, they meticulously as-
sessed the AICodeReview tool’s performance, employing various evaluation metrics
such as precision, recall, F1 score, accuracy, and BLEU scores. Their research, which
engaged 12 undergraduate students possessing fundamental programming knowl-
edge, spanned analyses on review time, the detection rate of code smells, and the
successful refactoring of identified issues.
Their findings underscored the tool’s remarkable impact on code review e�ciency,

as evidenced by significant reductions in review durations and heightened accuracy
in detecting code smells. Moreover, the AICodeReview tool demonstrated adeptness
in supporting the refactoring of identified code issues, thereby contributing to the
overall enhancement of software quality.[31]
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This chapter outlines the research design employed to investigate the advantages and
challenges of using ChatGPT for code refactoring among expert Java programmers.

4.1 Research Objective

Variables can help frame the research design, data collection, and analysis processes
in order to systematically evaluate the benefits and drawbacks of using ChatGPT
for code refactoring among expert Java programmers. This study adopts a mixed-
methods approach, combining quantitative and qualitative data collection methods
to gain a comprehensive understanding of the research question.
Quantitative data has been obtained through measuring variables related to

code quality and refactoring time.
Qualitative data has been gathered through interviews to capture the partici-

pants’ experiences, insights, and perspectives on using ChatGPT for code refactor-
ing.

4.1.1 Research Design Justification

A mixed-methods approach is chosen for this research due to the following reasons:

1. Comprehensiveness: Quantitative data provides objective measures of code
quality and refactoring e�ciency, while qualitative data o↵ers valuable insights
into the participants’ experiences, perceptions, and thought processes. Com-
bining both methodologies allows for a more holistic understanding of the
research question.

2. Triangulation: By using di↵erent data collection methods, potential biases
associated with individual methods can be mitigated. Convergence of find-
ings across quantitative and qualitative data strengthens the overall research
conclusions.

4.2 Variables

This section has delineated the crucial dependent and independent variables central
to this thesis, laying the groundwork for investigating the role of ChatGPT in code
refactoring. By scrutinizing these variables, the research aims to furnish valuable
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insights into the potential benefits, challenges, and overall impact of integrating AI
tools into software development practices.

4.2.1 Dependent Variable

In a study, the dependent variable represents the outcome or reaction measured or
observed as a result of manipulating the independent variable(s). These variables
are the aspects that researchers anticipate will change due to modifications in the
independent variable(s). For this study, the dependent variables could encompass:

1. Response Time: Time taken by participants to complete the refactoring tasks.

2. Improvement in code readability/maintainability: Evaluated through expert
review and code review tools.

3. Advantages of Using ChatGPT for Code Refactoring: Gathered through post-
interview questionnaires and interviews.

4. Challenges of Using ChatGPT for Code Refactoring: Collected through post-
interview questionnaires and interviews.

4.2.2 Independent Variable

Independent variables are intentionally altered, and their e↵ects on dependent vari-
ables are examined and evaluated. These variables are manipulated at specific spec-
ified levels, often termed as treatments. For this study, the independent variable
revolves around the utilization of ChatGPT.

4.2.3 Hypotheses

In this subsection, we delve into the hypotheses pertaining to the impact of Chat-
GPT on code refactoring tasks. These hypotheses aim to elucidate the potential
e↵ects of ChatGPT utilization on the refinement and enhancement of code struc-
tures.
H1: Response time in code refactoring tasks is influenced by the extent of Chat-

GPT usage, with higher levels of usage leading to either faster or slower response
times compared to lower levels.
H2: Expert Java programmers perceive several advantages associated with using

ChatGPT for code refactoring, such as increased e�ciency, accuracy, and creativity
in code improvements.
H3: There is a positive correlation between the use of ChatGPT and the im-

provement in code readability and maintainability, with higher levels of ChatGPT
utilization resulting in more substantial enhancements.
H4: Despite its benefits, expert Java programmers encounter various challenges

when using ChatGPT for code refactoring, including limitations in understanding
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context-specific programming nuances, potential errors in code modifications, and
integration complexities.

4.3 Study Participants

This study aimed to examine the e↵ects of utilizing ChatGPT for code refactoring
tasks among expert Java programmers. A meticulous selection process was em-
ployed to identify participants who met the following criteria:

1.Experience: Proficiency in Java programming was paramount, with a stipu-
lated minimum of X years of experience. This benchmark was established based
on industry standards to ensure participants possessed a depth of knowledge and
practical expertise in Java development.

2.Refactoring Experience: Candidates were required to have substantive experi-
ence in code refactoring, ensuring they could proficiently engage with the complexi-
ties of the tasks and provide informed feedback on ChatGPT’s utility in this context.

3.Java Syntax and Concepts Familiarity: A thorough understanding of Java
syntax and fundamental programming concepts was essential, ensuring participants
could accurately assess the quality of refactoring suggestions provided by ChatGPT.

The recruitment strategy was diverse, leveraging online communities, professional
networks, and academic institutions with robust Java programming curricula. This
approach ensured a wide pool of potential participants, from which 30 individuals
initially partook in the study. The survey link was distributed across di↵erent pro-
fessional platforms, targeting a broad spectrum of Java developers.

Of the 40 participants who commenced the survey, 14 successfully completed all
refactoring tasks. This completion rate underscores the challenging nature of the
tasks and possibly the varying degrees of familiarity and comfort with using AI
tools like ChatGPT for such specific programming activities. The participants were
sourced from a variety of professional backgrounds, encompassing di↵erent levels
of experience and expertise in Java programming. This diversity was intentional,
aimed at capturing a wide range of insights and experiences with ChatGPT’s appli-
cation in code refactoring tasks.

The survey and tasks were designed not only to assess the direct impact of ChatGPT
on code quality and refactoring e�ciency but also to gather qualitative feedback on
the participants’ experiences. This feedback covered the perceived advantages and
challenges of integrating ChatGPT into their refactoring workflow, providing a holis-
tic view of its potential as a tool in software development practices.
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By engaging expert Java programmers from varied professional environments and
with a minimum of X years of experience, the study meticulously evaluates Chat-
GPT’s utility and e↵ectiveness in the code refactoring process. The insights derived
from this select group contribute significantly to understanding the nuanced dynam-
ics of AI-assisted programming, specifically within the realm of Java development.

4.4 Material and Tasks

The experimental data in our study consisted of snippets of code. Code snippets are
a crucial component of studying how individuals comprehend programs, and they
frequently dictate the success of an experiment. Selecting code snippets is a crucial
aspect of hypothesis evaluation, as the research aims to determine the variations
in programmers’ behavior regarding accuracy and response time when attempting
to comprehend complex code snippets. For our study, we administered 5 distinct
refactoring tasks for both the pretest and posttest, along with 8 interview questions.

4.4.1 Pre-Questionnaires

We gave our participants a number of questionnaires that were designed to find out
about their backgrounds and areas of skill in order to get complete demographic
and programming experience data. Our group of participants came from a wide
range of professional Java programming fields, so we were sure to get a wide range
of views. To get a sense of how much experience our subjects had, we asked them
how long they had been programming in Java. In order to get a full picture of their
actual programming work, we also asked them about their involvement in bigger
software projects, like those done in professional settings or by companies.To get a
better idea of how much they knew about code rewriting, we also asked them how
many years of experience they had in this area. We also wanted to know about their
schooling, so we asked them if they studied computer science or programming at the
university level.To get a better idea of how skilled the participants were, they were
asked to rate how much Java-based training they had taken in school. In addition,
we used a scale to compare how skilled they thought they were at Java programming
to that of people with more than 20 years of experience as well as their friends or
colleagues.We looked at how often they used ChatGPT and whether they only used
it for code refactoring jobs when we looked into how they used it. In this way, we
were able to figure out how well ChatGPT fit into their developing processes.Lastly,
to put the participants’ work projects in context, they were asked to say how big
their average Java projects were, with projects being small, medium, or large based
on the number of lines of code. This gave them useful information about the size
and di�culty of their computing projects.
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Question
Number

Questions

Question 1 How old are you?
Question 2 How many years of experience do you have with Java programming?

Question 3
For how many years have you been programming for larger software
projects e.g. in a company? Please enter a number between 0 and
30.

Question 4 How many years of experience do you have with code refactoring?
Question 5 Did you study programming or computer science at a university?

Question 6
During your education, how many courses did you take where Java
was the primary language?

Question 7
On a scale from 1 to 5, how would you rate your Java programming
expertise (e.g 1-very inexperienced, 5-very experienced)?

Question 8
How would you compare your Java expertise to those with over
20 years of practical experience (e.g 1-very inexperienced, 5-very
experienced)?

Question 9
How would you rate your Java expertise in comparison to your peers
or colleagues (e.g 1-very inexperienced, 5-very experienced)?

Question 10 How often have you used Chat GPT (e.g 1-low, 5-high)?

Question 11
Have you used ChatGPT for code refactoring tasks (e.g 1-low, 5-
high)?

Question 12

What is the average size of Java professional projects you typi-
cally work on, categorized as small-scale (up to 900 lines of code),
medium-scale (900 to 40,000 lines of code), or large-scale (exceed-
ing 40,000 lines of code)?

Table 4.1: Table of Pre-Questionnaires

4.4.2 Programming Language and Experiment Language

Java was chosen for researching the advantages and challenges of using ChatGPT
for code refactoring due to its widespread popularity, complexity of projects, ma-
ture tooling ecosystem, and active developer community. Its extensive adoption
and diverse challenges in code maintenance make it an ideal target for evaluating
the e↵ectiveness of AI assistance in real-world development workflows. Addition-
ally, Java’s mature ecosystem of development tools facilitates seamless integration
of AI-powered tools like ChatGPT, enabling e�cient experimentation and evalu-
ation. Overall, focusing on Java allows researchers to gain valuable insights into
the practical implications of employing AI in code refactoring within a widely used
programming ecosystem.

31



4 Methodology

4.4.3 Program understanding tasks

For this research on understanding the advantages and challenges of using ChatGPT
for code refactoring, we selected five code snippets tailored for professional Java
programmers. These snippets were carefully chosen to represent common scenarios
encountered in real-world Java development, covering various aspects of syntax,
structure, and logic. By incorporating a diverse range of code examples, we aim
to assess ChatGPT’s e↵ectiveness in identifying and suggesting improvements for
di↵erent types of code issues.
Each code snippet is designed to challenge ChatGPT with tasks such as optimiz-

ing performance, improving readability, adhering to coding conventions, handling
exceptions, and enhancing overall maintainability. These tasks align closely with
the day-to-day responsibilities of professional Java developers, ensuring the rele-
vance and practicality of our evaluation.
Through the analysis of these carefully curated code snippets, we intend to gain

valuable insights into how ChatGPT performs in addressing the specific needs and
requirements of Java developers during code refactoring. This approach enables us
to evaluate the tool’s capability to assist professionals in e�ciently improving code
quality while navigating the complexities of real-world Java projects.

4.4.4 Code Snippets for Programming tasks

These snippets were carefully selected to demonstrate best practices in Java pro-
gramming, emphasizing code e�ciency, readability, and maintainability. Each snip-
pet is accompanied by a detailed explanation of its functionality and the specific
problem it solves, providing a clear link between programming theory and prac-
tice. This approach not only showcases the versatility of Java as a programming
language but also enhances the understanding of complex algorithms and data struc-
tures through concrete examples.

4.4.4.1 First Code snippet

This code in figure 4.1 is a method called getPayAmount() which calculates the
pay amount based on certain conditions. Here’s a simple breakdown:
It starts by declaring a variable result of type double. It checks if a person is

dead. If they are, it calculates the pay amount using the deadAmount() method.
If the person is not dead, it checks if they are separated. If they are, it calculates
the pay amount using the separatedAmount() method. If the person is neither
dead nor separated, it checks if they are retired. If they are, it calculates the pay
amount using the retiredAmount() method. If the person is none of the above
(not dead, not separated, and not retired), it calculates the pay amount using the
normalPayAmount() method. Finally, it returns the calculated result.
There are several ways the given code can be refactored to improve readability

and maintainability. Here are a few possibilities:
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Figure 4.1: First Code Snippet
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1.Using Early Returns:
Instead of nesting multiple if-else statements, we can use early returns to simplify
the code and improve readability.
2.Using Switch Statements:
If the conditions are based on simple checks of variables, we can use switch state-
ments for better readability.
3.Using Ternary Operator: If the conditions are straightforward, we can use the
ternary operator to make the code more concise.
4.Extracting Methods:
If the calculations for each condition are complex, we can extract them into separate
methods for better readability and maintainability.

4.4.4.2 Second Code snippet

Figure 4.2: Second Code Snippet

This code in figure 4.2 defines a Java class called Customer. Each customer has
a name, an address, and a balance.
When a new customer is created using the Customer constructor, they provide a

name and an address, and their balance is set to zero.
Customers can deposit money into their account using the deposit method. Sim-

ilarly, they can withdraw money using the withdraw method. The getBalance
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method returns the current balance of the customer’s account.
Overall, this code provides a simple representation of a customer with basic func-

tionalities to manage their account balance.
There are several ways the Customer class can be refactored for better quality.

Here are a few examples:
1.Encapsulation: Use getter and setter methods for the name, address, and bal-
ance fields instead of making them public. This encapsulates the class’s internal
state and provides better control over access to these fields.
2.Validation: Add validation checks to the deposit and withdraw methods to en-
sure that the amount being deposited or withdrawn is valid (e.g., non-negative, not
exceeding certain limits).
3.Immutable Class: Make the Customer class immutable by removing the setter
methods for name and address. This ensures that once a customer object is created,
its state cannot be changed. Instead, provide a constructor to initialize these fields.

4.4.4.3 Third Code snippet

Figure 4.3: Third Code Snippet

The code in Figure 4.3 defines a Java class called Customer. Each customer
has a name, an address, and a balance.When a new customer is created using the
Customer constructor, they are required to provide a name, an address, and an
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initial balance. The initial balance is set based on the value provided at the time of
creation.
Customers can make payments using the processPayment method, which de-

creases their balance by the payment amount, provided there is enough balance to
cover the payment. If the balance is insu�cient, an Insu�cientFundsException
is thrown, indicating the customer does not have enough funds to complete the
transaction.The printStatement method allows for printing the customer’s name,
address, and current balance to the console, o↵ering a summary of the customer’s
account details.
Overall, this code provides a simplistic representation of a customer with function-

alities to manage their balance through payments and to view their account details.
Refactoring the Customer class in Java can enhance its design, maintainability, and
performance. Here are several ways this class can be refactored:
1.Encapsulation and Data Hiding:
Provide getter methods for accessing private fields (name, address, and balance)

if necessary, ensuring that data can only be modified in controlled ways.
. 2.Exception Handling:
. Define the Insu�cientFundsException class if not already defined. Ensure it
extends an appropriate exception class, like RuntimeException or a more specific
custom exception class.
. 3.Use BigDecimal for Monetary Values: Replace double with BigDeci-
mal for the balance and amount to ensure precise monetary calculations and avoid
floating-point errors.
. 4.Immutability: If the Customer objects do not need to change after creation,
consider making the class immutable. This involves removing setters or methods
that modify state and ensuring all fields are final.
. 5.Adding Functionality: Add methods to deposit to the balance, enhancing
the class’s functionality. Implement an updateAddress method if address changes
need to be handled.
.

4.4.4.4 Fourth Code snippet

The provided Java code snippet in figure 4.4 defines a ShippingService class with
a single method calculateShippingCost, which calculates the shipping cost for an
Order based on its total price and weight. The calculateShippingCost method
takes an Order object as its parameter, which presumably has methods to retrieve
the total price getTotalPrice() and the weight getWeight() of the order. This
method implements a tiered shipping cost strategy, whRefactoring the provided
ShippingService class to improve its readability, maintainability, and possibly its
performance involves several steps. Here’s a brief overview of the refactoring process:
1.Extract Method for Conditionals: The nested conditional logic within cal-

culateShippingCost can be extracted into separate methods to clarify the intent
of each condition. For example, methods like isEligibleForDiscount and calcu-
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Figure 4.4: Fourth Code Snippet

lateDiscountcan make the code more readable.
2.Simplify Conditional Expressions: The nested if-else structure can be sim-

plified. Since there’s a clear return statement within each conditional branch, we
can utilize early returns to reduce nesting and improve readability.
3.Use Descriptive Variable Names: While the variable names are relatively

clear, ensuring that all names precisely describe their purpose can aid understanding.
For example, renaming totalPrice to orderTotalPrice could provide immediate
context.
4.Error Handling: Adding error handling or validation checks, such as ensur-

ing order is not null and that its properties (totalPrice and weight) are within
expected ranges, can prevent runtime errors.
5.Comments and Documentation: Adding comments or documentation to

the method and the class itself can help other developers understand the purpose of
the code and any specific logic applied in the calculations.
By following these steps, the ShippingService class can be made more e�cient,

understandable, and easier to maintain, enhancing overall code quality.ere the cost
is determined by both the total price and the weight of the order, incentivizing
higher-value orders with potentially higher shipping discounts or charges based on
the weight.

4.4.4.5 Fifth Code snippet

This Java code in figure 4.5 defines a class named Order that models an order
in a simple e-commerce or retail system. The Order class includes fields for the
customer’s name customerName, the product name productName, the price
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Figure 4.5: Fifth Code Snippet

of the product price, and a unique order ID orderId. A static AtomicInteger
named orderIdGenerator is used to generate unique order IDs, starting from 1000
and incrementing with each new order instance created. The constructor of the
Order class takes the customer name, product name, and price as parameters, sets
the corresponding instance variables, and automatically assigns a unique order ID
by incrementing orderIdGenerator. The toString method overrides the default
implementation to return a string representation of the order, which includes the
customer name, price, and order ID, separated by commas. This class illustrates
the use of atomic operations for generating unique IDs and encapsulates the details
of an order in a straightforward manner.
Refactoring the provided Java code can make it more maintainable, readable, and

potentially e�cient. Here are the steps to refactor the given code snippet:

1. Encapsulation: Ensure all fields are private and provide public getter meth-
ods for necessary fields to maintain encapsulation and data integrity.

2. Formatting: Properly format the code to improve readability. This includes
organizing the declaration of fields, constructor, and methods in a consistent
manner, and ensuring there is appropriate spacing and indentation.

3. Use of String.format: Instead of concatenating strings using +, use String.format
for constructing the toString method’s return value. This enhances readabil-
ity and maintainability.

4. Final Fields: Make immutable fields final (e.g., customerName, product-
Name, price) to convey intention clearly that these fields are not expected
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to change once an instance is created.

5. Comments and Documentation: Add comments and/or JavaDoc docu-
mentation to explain the purpose of the class, the role of the orderIdGenera-
tor, and any non-obvious logic within methods. This is particularly important
for the toString method and the constructor.

4.4.5 Pretest

Before commencing the experimental intervention with ChatGPT, a pretest was
designed to establish a baseline of participants’ current code refactoring skills and
e�ciency. The pretest consisted of a set of Java code snippets, each embodying
common refactoring challenges, such as redundant code, ine�cient algorithms, and
poor readability. Participants were asked to refactor these snippets following best
practices to enhance code quality without altering the intended functionality.
The pretest aimed to assess:

1. Time E�ciency: The duration taken by participants to complete each refac-
toring task.

2. Quality of Refactoring: Based on established code quality including lines
of code and adherence to coding standards.

3. Participants’ Confidence: Through a short questionnaire, participants rated
their confidence in their refactoring solutions on a Likert scale.

This pretest data served as a crucial benchmark for comparing the impact of
utilizing ChatGPT in the subsequent phases of the experiment.

4.4.6 Post-test

Following the intervention period, where participants utilized ChatGPT for code
refactoring tasks, a post-test identical in structure to the pretest was administered.
This was done to evaluate any changes in the participants’ refactoring e�ciency,
quality, and confidence. The same set of Java code snippets were utilized in both
the pre-test and post-test to maintain consistency in the tasks being evaluated.
The post-test aimed to measure:

• Improvements in Time E�ciency: Reduction in the time taken to refactor
code snippets as compared to the pretest.

• Enhancements in Quality: Improvements in code quality metrics reflecting
the impact of using ChatGPT.

• Change in Confidence Levels: Participants’ perceived confidence in their
refactoring solutions after using ChatGPT, compared to their pretest responses.

The comparison between pretest and post-test results was critical in assessing the
e↵ectiveness of ChatGPT as a tool for assisting with code refactoring.
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4.4.7 Post Interview Questionnaires

To complement the quantitative data from the pretest and post-test, post-interview
questionnaires were conducted to gather qualitative insights into the participants’
experiences using ChatGPT for code refactoring. The questionnaires explored the
following areas:

Perceived Advantages

Participants’ views on how ChatGPT facilitated their refactoring process were gath-
ered, including aspects such as:

• Idea generation

• Code optimization suggestions

• Error identification

Challenges Encountered

Participants shared the di�culties faced while using ChatGPT, which included:

• Misinterpretations of code intent

• Limitations in AI’s understanding of complex programming constructs

• Integration issues into existing workflows

Usability and Integration

Feedback on the ease of integrating ChatGPT into their development environment
and its usability for refactoring tasks was collected to assess:

• Integration challenges and solutions

• Usability feedback for enhancing tool interaction

Future Use and Recommendations

Insights into participants’ willingness to continue using ChatGPT for refactoring
and their suggestions for improving the tool’s e↵ectiveness in software development
processes were explored, focusing on:

• Potential areas for further research and tool enhancement

• Recommendations for improving ChatGPT’s utility in code refactoring

40



4 Methodology

These questionnaires aimed to provide a comprehensive understanding of the qual-
itative aspects of using ChatGPT for code refactoring, complementing the quantita-
tive findings and o↵ering insights into potential areas for further research and tool
enhancement.
By addressing these components in the thesis, a detailed account of the experi-

ment’s methodology is provided, encompassing both the quantitative and qualita-
tive assessments of using ChatGPT in code refactoring tasks among expert Java
programmers.

Question
Number

Questions

Question 1
Can you share your experiences using ChatGPT for code refactor-
ing? What were the specific benefits or advantages you observed
during the process?

Question 2
In what ways did ChatGPT enhance your productivity and e�-
ciency in completing code refactoring tasks? Please provide specific
examples

Question 3
Did ChatGPT help you discover new refactoring techniques or ap-
proaches that you were previously unaware of? If yes, please elab-
orate on these insights.

Question 4
How did ChatGPT contribute to the maintainability and readabil-
ity of the code you produced during refactoring? Were there any
notable improvements or challenges in this aspect?

Question 5
Were there any specific challenges or limitations you encountered
while using ChatGPT for code refactoring? How did you overcome
them, if at all?

Question 6

In what scenarios do you believe AI assistance, like ChatGPT, is
most beneficial for code refactoring? Conversely, are there situa-
tions where you think it might be less e↵ective or not suitable at
all?

Question 7
How does ChatGPT’s performance vary depending on the complex-
ity of the code?

Question 8 Would you recommend ChatGPT to other Java programmers?

Table 4.2: Post Interview Questionnaires

4.5 Experimental Design

The core of any empirical study is its experimental design. This design not only
connects theoretical concepts with practical applications but also validates the reli-
ability and accuracy of the research outcomes. Our investigation, conducted during
the winter semester of 2023/24, aims to explore the e↵ectiveness of ChatGPT in
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assisting expert Java programmers with code refactoring tasks. The design of our
experiment carefully outlines our methodological approach, allowing for a structured
exploration of ChatGPT’s capabilities and limitations within the realm of Java pro-
gramming.

1.Participant Selection and Recruitment

The success of our study largely hinges on the selection of a representative sam-
ple of participants, which in turn, significantly influences the applicability of our
findings. We targeted a diverse range of Java programmers from novices to experts
to ensure a thorough examination of ChatGPT’s utility across varying levels of
expertise. A total of 14 programmers were purposefully selected based on their pro-
ficiency in Java, willingness to participate, and availability during the study period.
This selection strategy was crucial for assembling a group that accurately reflects
the broader Java programming community.

2.Survey Design and Implementation

The primary tool for data collection in our study was a survey developed on the
LimeSurvey platform, chosen for its robustness and adaptability. The survey was
intricately designed to capture detailed responses regarding the programmers’ in-
teractions with ChatGPT during code refactoring. A variety of question types,
from multiple-choice to open-ended, were utilized to collect both quantitative and
qualitative data. The implementation phase included a pilot test with a subset of
participants, which helped refine the survey questions and ensured the clarity of the
survey instructions.

3.Data Confidentiality and Processing

Acknowledging the sensitivity of the data and the privacy of our participants, strin-
gent measures were adopted to ensure confidentiality. All participant data were
anonymized, with personal identifiers removed or encrypted. The Limesurvey plat-
form was configured to comply with data protection regulations, ensuring that the
collected data were stored securely and only accessible to the research team. Follow-
ing data collection, a rigorous data processing protocol was established, involving
data cleaning, coding, and preparation for analysis. This process was critical in
ensuring the integrity and usability of the data for subsequent analytical phases.

4.Expected Outcomes and Analytical Approach

The experimental design is geared towards achieving a dual objective: firstly, to
assess the e↵ectiveness and e�ciency of ChatGPT in aiding Java programmers with
code refactoring tasks; and secondly, to identify any barriers or limitations encoun-
tered. We anticipate that our findings will provide valuable insights into the practical
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applications of ChatGPT in software development, particularly in code refactoring.
The analytical approach will involve a mix of statistical analysis for quantitative data
and thematic analysis for qualitative responses, enabling a holistic understanding of
the phenomena under study.

In conclusion, the experimental design of our study lays a solid foundation for ex-
ploring the potentials and challenges of using ChatGPT in code refactoring among
Java programmers. By systematically examining each aspect of the design, from
participant recruitment to data analysis, we aim to contribute significantly to the
existing body of knowledge on AI’s role in software development processes.

Figure 4.6: Experimental Design Steps
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Detailed information regarding the implementation of this study can be found in the
following chapter, which outlines the structured actions that were taken in order to
facilitate its execution. The first phase began at the beginning of the winter semester
of 2023/24, and it consisted of the methodical creation of a thorough survey through
the use of the Limesurvey site through the registration process for TUC OPAL
Access. Participants were provided with a link to a survey that was generated from
the Linesurvey and distributed via a variety of internet platforms. Although about
forty participants attempted to finish the survey in its entirety, only fourteen of
them were successful in doing so. Data was collected from 09 January, 2024 to 25
February ,2024. It is of the highest importance to emphasize that the information
gathered from these participants will be handled with the utmost confidentiality
and processed in an anonymous manner in order to guarantee the authenticity and
anonymity of the conclusions associated with the study.

Figure 5.1: Survey Starting page
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5.1 Survey Pre-Questionnaires

Upon completing the introductory section of the survey, participants proceeded to
the survey questionnaires, where they were required to answer a series of short
questions, some of which were mandatory and others optional. The inclusion of a
mandatory inquiry was necessary in order to gather the specific data required for
generating the intended outcome. The task was completed quickly and there were
a total of 12 questions.

Figure 5.2: Survey Pre-Questionnaires page

5.2 Pretest

Prior to directly entering the Java code snippet portion, a brief and significant ex-
planation was provided. So they can readily comprehend the norms and regulations
of the coding duties. A total of five codes were provided in this section, where the
use of AI or ChatGPT was prohibited. Each coding job had a time constraint of
3 minutes. After a duration of 3 minutes, the timeout event was triggered and the
subsequent code snippet commenced.

5.3 Posttest

Upon finishing five pretest code snippets, the participants proceeded to the post-test
coding challenge. The Java codes had stayed unchanged, but in this area, developers
could utilize Chat GPT to obtain recommendations for code refactoring.
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Figure 5.3: Survey Task explanation page

Here also each coding job had a time constraint of 3 minutes. After a duration
of 3 minutes, the timeout event was triggered and the subsequent code snippet
commenced.

5.4 Interview Questions

Following the completion of the coding phase, participants proceeded to the final
chapter of our survey, where they encountered qualitative items. There was no time
constraint for the portion. They can provide concise responses to the inquiries. A
total of 8 questions were provided in that area.
Upon finishing all the necessary steps, the users pressed the submit button, caus-

ing the answer to be automatically stored in LimeSurvey. Finally, we have the
option to download the responses in several formats in order to generate our desired
output.
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This chapter provides a comprehensive overview of the systematic phases of data
collection and processing undertaken in this study before delving into the analysis
of collected data.

6.1 Data collection and processing

The data collection phase began by creating a thorough study plan that carefully
defined the variables of interest and the procedures for measuring them. The design
phase of the work included a thorough examination of relevant literature and dis-
cussions with professionals in the industry to guarantee the use of suitable metrics
and procedures.

6.1.1 Data collection

The initial phase involved retrieving pre-test and post-test data from Lime Survey
in Excel format. Lime Survey automatically organizes survey responses, o↵ering
diverse options for data export. Utilizing the ”Responses and statistics ! Export
! Export result” feature, data could be downloaded in various formats including
Excel, CSV, PDF, R (syntax file), R (data file), HTML, and Microsoft Word. Excel
and PDF formats were selected due to their ability to present data in a structured
manner, facilitating easier analysis and interpretation. Each response dataset was
tagged with a unique ”Response ID” for identification. The collect dataset, as
illustrated in Figure 6.1, showcased additional columns such as participant seed
numbers, capturing survey start and end times. Prior to analysis, data cleaning
procedures were imperative.

6.1.2 Data processing

For the purpose of evaluating the advantages and challenges of utilizing ChatGPT for
code refactoring among expert Java programmers, LimeSurvey was employed as the
primary tool for data collection. This online survey tool facilitated the distribution
of both pretest and posttest questionnaires, alongside programming comprehension
tasks tailored to assess the participants’ code refactoring skills.
The versatility of LimeSurvey allowed for the seamless administration of surveys

and the collection of responses in real-time. To cater to the diverse analytical needs
of this study, data was downloaded in various formats, including PDF and Excel,
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Figure 6.1: Example of Collected front page dataset

among others. This multiplicity in data formats was instrumental in enabling a
comparative analysis that leveraged the strengths of each format for a comprehensive
understanding of the gathered data.
1. Format-Specific Preprocessing: Focus on processing data in two specific

formats.
PDF Data: The PDF format was particularly useful for preserving the layout and
formatting of responses for qualitative analysis. Data extracted from PDFs was
digitized, as needed, to transform response texts into editable formats suitable for
thematic analysis.
Excel Data: Excel files o↵ered a structured format ideal for quantitative analysis.

Preprocessing involved filtering irrelevant columns, renaming variables for clarity,
and using pivot tables and formulas to summarize response trends and patterns.
Excel’s data manipulation capabilities facilitated the identification of outliers and
the calculation of descriptive statistics.
2. Comparative Analysis: The study employed a dual-faceted approach to

compare results across the di↵erent data formats:
Qualitative Insights: The PDF format, with its intact presentation of survey

questions and responses, allowed for a detailed narrative analysis. This was piv-
otal in understanding the contextual nuances behind participants’ experiences with
ChatGPT, including perceived benefits and challenges.
Quantitative Metrics: Excel’s analytical prowess enabled the computation of

response times, correctness rates, and the categorization of errors into logical and
syntactic. This quantitative analysis provided a measurable assessment of the impact
of using ChatGPT on code refactoring e�ciency and e↵ectiveness.

48



6 Results and Analysis

6.2 Data analysis

The synthesis of quantitative and qualitative data analysis provided a holistic un-
derstanding of ChatGPT’s utility in code refactoring. While ChatGPT significantly
enhances e�ciency, reduces errors, and improves code quality, it also presents chal-
lenges that necessitate cautious integration into programming practices. This nu-
anced view underscores the potential of AI in software development while highlight-
ing areas for future research and development to maximize the benefits and mitigate
the drawbacks of AI-assisted code refactoring.

6.2.1 Descriptive statistics

Descriptive statistics are quantitative metrics that provide a summary and descrip-
tion of the characteristics of a dataset. They o↵er valuable information on the
average, spread, and form of the data distribution. For this study on code refac-
toring with ChatGPT, descriptive statistics can be used to assess many aspects of
the obtained data, including the quality of refactored code, response times, and
perceptions of utilizing ChatGPT.

6.2.1.1 Description of the subjects

According to the survey results, out of the 14 participants, the majority (64.3 %)
had 1-2 years of expertise in Java programming, which was the most common group.
3 respondents (21.4 %) reported having 6–8 years of Java expertise, making it the
second most frequent response. Merely 2 participants (14.3 %) reported possessing
a Java proficiency ranging from 2 to 4 years. When considering the data as a
whole, we observe that 78.6 % of the participants possess Java expertise ranging
from 0 to 4 years, while all participants have experience ranging from 0 to 8 years.
To summarize, the findings indicate that the participants generally possess limited
proficiency in Java, with most of them having 1-2 years of experience. Approximately
20 % possess a professional background of 6–8 years, although a small minority (14.3
%) fall within the middle range of 2-4 years. In general, the distribution is biased
towards less experienced Java programmers who have been working for less than 4
years.

Valid Frequency Percent Valid Per-
cent

Cumulative
Percent

1 to 2 9 64.3 64.3 64.3
2 to 4 2 14.3 14.3 78.6
6 to 8 3 21.4 21.4 100.0
Total 14 100 100

Table 6.1: How many years of experience do you have in Java Programming?
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According to the findings, out of the 14 participants, the majority (71.4%, or 10
participants) possess a decade of expertise in programming for extensive software
projects within a corporate environment. Out of the total respondents, 4 individuals,
accounting for 28.6%, possess 4 years of expertise in working on similar projects. To
summarize, all the participants have professional programming experience ranging
from 4 to 10 years on software projects within larger companies, with 10 years being
the most frequently mentioned duration. The overwhelming majority already have
more than 5 years of experience. The data suggests that the respondents possess
significant practical programming experience in professional settings, rather than
being limited to personal or academic projects. On average, the respondents had
accumulated around 10 years of experience, with a tendency towards higher values.

Valid Frequency Percent Valid Per-
cent

Cumulative
Percent

0 4 28.6 28.6 6
0 to 10 10 71.4 71.4 100.
Total 14 100.0 100.0

Table 6.2: For how many years have you been programming for larger software
projects e.g. in a company? Please enter a number between 0 and 30.

The data on code restructuring experience over the years indicates that, among
the 14 participants, the majority (42.9%) reported having 1-2 years of experience,
which was the most often mentioned response. Subsequently, three respondents
(21.4%) indicated a lack of code restructuring experience. The remaining responses
were allocated among the following time periods: 2-3 years (7.1%), 4-5 years (7.1%),
6-7 years (14.3%), and 9-12 years (7.1%). When considering the data as a whole,
it can be observed that the majority of respondents (64.3%) possess a maximum
of 2 years of expertise in refactoring. All participants possess a maximum of 12
years of experience in the field of code restructuring. To summarize, the results
suggest that the respondents have varying levels of experience in refactoring, with a
majority having no experience or less than 2 years of experience. A small minority
indicated extensive experience of six or more years dedicated to code restructuring
assignments.
The data on code restructuring experience over the years indicates that, among

the 14 participants, the majority (42.9%) reported having 1-2 years of experience,
which was the most often mentioned response. Subsequently, three respondents
(21.4%) indicated a lack of code restructuring experience. The remaining responses
were allocated among the following time periods: 2-3 years (7.1%), 4-5 years (7.1%),
6-7 years (14.3%), and 9-12 years (7.1%). When considering the data as a whole,
it can be observed that the majority of respondents (64.3%) possess a maximum
of 2 years of expertise in refactoring. All participants possess a maximum of 12
years of experience in the field of code restructuring. To summarize, the results
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Valid Frequency Percent Valid Per-
cent

Cumulative
Percent

0 3 21.4 21.4 21.4
1 to 2 6 42.9 42.9 64.3
2 to 3 1 7.1 7.1 71.4
4 to 5 1 7.1 7.1 78.6
6 to 7 2 14.3 14.3 92.9
9 to 12 1 7.1 7.1 100.0
Total 14 100.0 100.0

Table 6.3: How many years of experience do you have with code refactoring?

suggest that the respondents have varying levels of experience in refactoring, with a
majority having no experience or less than 2 years of experience. A small minority
indicated extensive experience of six or more years dedicated to code restructuring
assignments.

Valid Frequency Percent Valid Per-
cent

Cumulative
Percent

Yes 14 100.0 100.0 100.0

Table 6.4: Did you study programming or computer science at a university?

The table shows that all 14 respondents (100%) studied programming or computer
science at the university level.

Valid Frequency Percent Valid Per-
cent

Cumulative
Percent

1 to 2 7 50.0 50.0 50.0
2 to 4 7 50.0 50.0 100.0
Total 14 100.0 100.0

Table 6.5: During your education, how many courses did you take where Java was
the primary language?

When questioned about the number of classes in which Java was predominantly
used during their study, the responses were evenly divided. Seven respondents (50%)
reported taking 1-2 Java courses, while the other seven respondents (50%) attended
between 2-4 courses where Java was the primary programming language. To sum-
marize, all participants possess a formal tertiary-level education in computer science
or programming. Regarding the respondents’ experience with Java in school, there
is an equal distribution between those who have taken 1-2 courses that specifically
focus on Java and those who have taken 2-4 Java courses. Although all respondents
possess academic credentials in computer science and programming, their level of
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experience with Java coursework varies, with around half having limited exposure
compared to those with extensive exposure. However, none of the participants indi-
cated that they had taken more than four Java classes during their time at university.

Among the 14 respondents, the self-reported expertise levels for Java programming
indicate that the most frequent response was ”neither inexperienced nor experi-
enced,” with 6 selections (42.9%). The second most prevalent category was ”ex-
perienced,” with 4 responses, accounting for 28.6% of the total. This was followed
by ”very inexperienced” and ”inexperienced,” with two responses each, making up
14.3% each. Merely one participant, accounting for 7.1% of the total, identified
themselves as ”highly experienced.” When considering the data as a whole, 21.4%
of individuals perceive themselves as slightly lacking in experience, while 35.7% con-
sider themselves to be experienced. Although there is a range of ability levels, the
majority of respondents positioned themselves in the middle, indicating that they
are neither novices nor specialists. The findings suggest that there is a scarcity
of individuals with advanced Java programming skills within this particular set of
respondents. Most individuals possess a functional understanding of the language,
although they may not necessarily have complete expertise or mastery. When evalu-

Valid Frequency Percent Valid Per-
cent

Cumulative
Percent

Very Low 3 21.4 21.4 21.4
Low 2 14.3 14.3 35.7
Moderate 5 35.7 35.7 71.4
High 2 14.3 14.3 85.7
Very High 2 14.3 14.3 100.0
Total 14 100.0 100.0

Table 6.6: How often have you used Chat GPT (e.g 1-low, 5-high)?

ating their personal proficiency in Java in comparison to individuals with more than
20 years of hands-on experience, the prevailing reaction was ”inexperienced,” with
5 out of 14 participants (35.7%) selecting this option. Each of the 3 respondents
(21.4% each) identified themselves as ”very inexperienced,” ”neither inexperienced
nor experienced,” and ”experienced,” respectively, when compared to experienced
individuals in the language. Overall, 57.1% of individuals perceive themselves as
somewhat inexperienced compared to specialists with 20 years of experience, whereas
21.4% have a neutral stance and another 21.4% consider themselves experienced.
The distribution of replies regarding one’s Java competence, as compared to peers
and coworkers, was more evenly balanced. The predominant response was ”neither
inexperienced nor experienced,” selected by 5 out of 14 respondents (35.7%). Ex-
actly 5 respondents, which accounts for 35.7% of the total, considered themselves
to be ”experienced” compared to their colleagues. Among their coworkers, 14.3%
of the respondents, or 2 individuals, said that they are either ”very inexperienced”
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or ”inexperienced.” Out of the total, 28.6% consider themselves to be below aver-
age, while 71.4% believe they are either average or above average compared to their
direct counterparts. Approximately 25% acknowledge that they fall behind their
peers, but the majority assess themselves favorably compared to other programmers
within their social groups.
The poll inquired about the frequency at which respondents have utilized ChatGPT,
using a rating scale ranging from little to maximal usage. The prevailing response
was ”moderate” consumption, selected by 5 out of 14 individuals (35.7%). Among
the replies, ”very low” and ”low” usage were the second most frequent, chosen by 3
respondents (21.4%) and 2 respondents (14.3%), respectively. Regarding increased
usage, 2 respondents (14.3% each) reported that their frequency of using ChatGPT is
categorized as ”high” or ”very high.” Out of all the respondents, 50% had a reduced
utilization of ChatGPT, whereas 28.6% use it more frequently. When specifically

Valid Frequency Percent Valid Per-
cent

Cumulative
Percent

Very Low 5 35.7 35.7 35.7
Low 1 7.1 7.1 42.9
Moderate 5 35.7 35.7 78.6
High 2 14.3 14.3 92.9
Very High 1 7.1 7.1 100.0
Total 14 100.0 100.0

Table 6.7: Have you used ChatGPT for code refactoring tasks (e.g 1-low, 5-high)?

inquired about employing ChatGPT for code reworking tasks, the predominant re-
sponse indicated ”minimal” utilization, with 5 out of 14 participants (35.7%) opting
for this option. Exactly 5 respondents, accounting for 35.7% of the total, reported a
”moderate” level of utilization for refactoring. Out of the total number of responses,
2 individuals (14.3%) reported a ”high” level of usage, 1 individual (7.1%) reported
a ”low” level of usage, and 1 individual (7.1%) reported a ”very high” level of usage
for code reworking with ChatGPT. Thus far, a significant proportion of respondents,
specifically 42.9%, have indicated a low or very low level of usage of ChatGPT for
coding activities. Conversely, 21.4% of individuals characterize their usage as high
to extremely high. Experiences with ChatGPT vary greatly; some individuals have
only scratched the surface of its potential, while others are now extensively utilizing
it for programming and refactoring support. However, the most significant portion
indicates a decent level of integration into coding procedures up to now.

6.2.1.2 Response time of pretest code refactoring tasks

This table presents a detailed quantitative analysis of the response times for pretest
code refactoring tasks undertaken by 14 participants. Although 14 participants
completed the whole survey, about 10 participants completed the total snippets
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of pretest and post-test. Because some of them skipped one or more tasks. The
tasks, labeled from Question 1 to Question 5, were designed to assess the e�ciency
and proficiency of the participants in performing code refactoring under varying
levels of complexity. Each question was analyzed based on the total number of
participants (N), the minimum and maximum time taken to complete the task, the
mean (average) time, and the standard deviation, which measures the variability of
the response times among participants showing in figure 6.2.
Question 1 demonstrates a higher level of complexity or challenge, as indicated

by the longer average time required to complete the task (approximately 131.81
seconds). The range between the minimum and maximum times (85.05s to 180s)
suggests varied participant familiarity and proficiency with the specific refactoring
task, supported by a standard deviation of approximately 35.44 seconds.
Question 2 also shows significant variability in response times (87.22s to 179.66s),

with an average completion time of around 129.4 seconds. The high standard devi-
ation of approximately 36.94 seconds further highlights the diverse approaches and
strategies adopted by the participants in tackling the refactoring challenges.
Question 3 exhibits a noticeable decrease in the mean response time to roughly

142.88 seconds, indicating potentially lower task complexity or greater participant
comfort with the task requirements. However, the broad range of times (66.96s
to 180s) and a high standard deviation of approximately 38.99 seconds point to
significant di↵erences in participant performance and strategy.
Question 4 is characterized by the shortest mean response time of approximately

98.6 seconds, suggesting it was relatively easier for the participants compared to
the other tasks. The narrower range of response times (61.44s to 132.67s) and a
lower standard deviation of around 24.35 seconds further imply a more consistent
performance among participants on this task.
Question 5, with a mean time of approximately 121.51 seconds, falls in the mid-

dle range of complexity as inferred from the response times of the other questions.
The response times ranged from 68.65s to 179.11s, with a standard deviation of
approximately 38.1 seconds, indicating a moderate level of variability in how par-
ticipants approached and executed the refactoring task.
Overall, the data from these pretest code refactoring tasks reveal insightful trends

about the participants’ refactoring skills and e�ciency. The varied mean times
and standard deviations across the questions indicate that di↵erent tasks elicited
a wide range of performances, likely influenced by the task’s nature, complexity,
and participants’ individual skill levels and experience with code refactoring. This
variability underscores the importance of diverse and targeted practice in refining
code refactoring proficiency among developers.
Notably, In instances where participants completed tasks in less than three sec-

onds, these instances were interpreted as task skips rather than genuine task com-
pletions. Consequently, such timings were excluded from our data sets to ensure
that our calculations accurately reflect the actual e↵ort exerted by participants.
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Question
Number

Minimum Maximum Mean Std. Devi-
ation

Question 1 85.5s 180s 131.81 35.44
Question 2 87.22s 179.66s 129.40 36.94
Question 3 66.96s 180s 142.88 38.99
Question 4 61.44s 132.67s 98.6 24.35
Question 5 68.55s 179.11s 121.51 38.10

Table 6.8: Analysis of Participant Response Times in Code Refactoring Pretest
Tasks

Figure 6.2: Pretest Code Refactoring Response Times

6.2.1.3 Response time of post-test code refactoring tasks

This table provides a comprehensive quantitative analysis of the response times for
post-test code refactoring tasks performed by 14 participants. The tasks, labeled
from Question 1 to Question 5, aimed to evaluate the e↵ectiveness of participants
in executing code refactoring, possibly after being introduced to or practicing with
an AI tool like ChatGPT. Analysis metrics include the total number of participants
(N), the minimum and maximum times taken to complete each task, the mean time,
and the standard deviation, which indicates the spread of response times across
participants showing in figure 6.3.
Question 1 had the longest mean response time at approximately 81.56 seconds,

suggesting either a higher level of task complexity or that participants took a cau-
tious approach to ensure accuracy in refactoring. The broad range in response times
(38.47s to 165.18s) and a standard deviation of approximately 42.46 seconds indi-
cate considerable variability in participants’ proficiency and strategies in tackling
the task.
For Question 2, the mean response time reduced to roughly 52 seconds, with
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response times ranging from 36.29s to 109.67s. The relatively lower standard devia-
tion of about 20.66 seconds compared to Question 1 suggests participants were more
uniform in their approach and execution, possibly indicating a task of intermediate
complexity or better alignment with participants’ skills.
Question 3 showcased the shortest mean response time at around 49.83 seconds,

hinting at either an easier task or improved participant e�ciency. The response time
span from 31.87s to 88.70s, alongside a standard deviation of approximately 19.49
seconds, underscores a more consistent performance across the board, reflecting
either familiar task patterns or e↵ective application of refactoring techniques.
Question 4, with a mean time of approximately 52.45 seconds, presented a unique

challenge, as evidenced by the maximum response time of 145.52s. Despite this out-
lier, the standard deviation of around 33.71 seconds points to a fair amount of
consistency in participant responses, possibly indicating a balanced task complex-
ity or an e↵ective grasp of required refactoring methodologies by the majority of
participants.
Lastly, Question 5 had a mean response time of about 58.03 seconds, situating it

amongst the tasks with moderate complexity based on participant response times,
which ranged from 26.69s to 139.20s. The standard deviation of approximately
32.89 seconds suggests a moderate level of variation in how participants approached
the refactoring task, potentially reflecting diverse interpretations of the task re-
quirements or variability in comfort levels with the refactoring tools or techniques
employed.
In summary, the analysis of post-test code refactoring tasks illuminates signifi-

cant insights into the learning curve, e�ciency, and adaptability of participants in
employing new tools or techniques for code refactoring. The variance in mean re-
sponse times and standard deviations across the tasks reveals a nuanced picture of
participants’ engagement with the refactoring process, highlighting areas of strength
and opportunities for further skill development. The progression from pre-test to
post-test tasks likely reflects an evolutionary learning process, where exposure to
new methodologies or tools such as ChatGPT facilitates a refined approach to code
refactoring, ultimately aiming to enhance code quality and developer productivity.

Question
Number

Minimum Maximum Mean Std. Devi-
ation

Question 1 38.47s 165.18s 81.56 42.46
Question 2 36.29s 109.67s 52.06 20.66
Question 3 31.87s 88.7s 49.83 19.49
Question 4 27.72s 145.52s 52.45 33.71
Question 5 26.69s 139.2s 58.03 32.89

Table 6.9: Analysis of Participant Response Times in Code Refactoring Posttest
Tasks
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Figure 6.3: Posttest Code Refactoring Response Times

6.2.1.4 Correctness of Pretest and Post-test code refactoring tasks

The study involved participants tasked with refactoring Java code snippets both
with and without the assistance of ChatGPT. The objective was to assess whether
ChatGPT could improve the quality of code refactoring in terms of readability, ef-
ficiency, and maintainability. For example in figure 6.4 and in figure 6.5 while the
performance di↵erences for constructing individual Order objects might be negli-
gible in many practical applications, the second version provides a cleaner, more
maintainable, and potentially more e�cient implementation, particularly in terms
of string handling and object immutability. The choice of String.format() over direct
concatenation can lead to more predictable and manageable code, which is crucial
in larger, more complex software systems where performance and maintainability
are critical. And the second one also taking less time.
Sample two (Without ChatGPT): The original code used nested if-else state-
ments to calculate a payment amount based on various conditions such as isDead,
isSeparated, and isRetired in figure 6.6.

Sample two (With ChatGPT): The refactored code, with the assistance of Chat-
GPT, streamlined the conditional logic, making it more concise and easier to un-
derstand in figure 6.7.
Sample three (Without ChatGPT): The initial version of the Customer class
included basic methods for depositing and withdrawing funds without any valida-
tion in figure 6.8.
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Figure 6.4: Response sample one in pretest

Figure 6.5: Response sample one in posttest
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Figure 6.6: Response sample two in pretest

Figure 6.7: Response sample two in posttest
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Figure 6.8: Response sample three in pretest

Sample three (With ChatGPT): After refactoring with ChatGPT’s assistance,
validation checks were added to ensure amounts were positive, showcasing an im-
provement in code quality and robustness in figure 6.9.

Figure 6.9: Response sample three in posttest

Sample four (Without ChatGPT):In the initial code snippet, the ShippingSer-
vice class calculates shipping costs based on the order’s total price and weight, using
nested if-else statements in figure 6.10.

Sample Four (With ChatGPT): After refactoring with ChatGPT’s assistance,

60



6 Results and Analysis

Figure 6.10: Response sample four in pretest

the method is optimized to use conditional operators for a more concise and readable
implementation in figure 6.11.

Figure 6.11: Response sample four in posttest

Sample five (Without ChatGPT): The original Order class implementation con-
catenates strings in the toString method, which is less e�cient and harder to read
in figure 6.12.

Sample five (With ChatGPT): Refactoring with ChatGPT improves the toString
method by using String.format, enhancing readability and maintainability in fig-
ure 6.13.

Comparative Analysis: These additional examples further illustrate the impact
of ChatGPT’s assistance in refactoring tasks. The posttest examples, enhanced with
ChatGPT’s guidance, exhibit a clearer, more e�cient coding style that improves
upon the original implementations in several ways:
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Figure 6.12: Response sample five in pretest

Figure 6.13: Response sample five in posttest
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Readability: The use of conditional operators and String.format makes the code
more readable, allowing developers and reviewers to understand the logic at a glance.
E�ciency: By optimizing conditional logic and string formatting, the refactored
code is likely more e�cient, especially in scenarios where these methods are called
frequently.
Best Practices: The posttest examples adhere more closely to Java best prac-
tices, such as using String.format for creating formatted strings, which also aids in
internationalization and localization e↵orts.

6.2.2 Post interview result

This qualitative analysis presents the main topics that emerged from the experi-
ences of skilled Java developers who utilized the AI helper ChatGPT to assist them
in their code reworking tasks. Participants shared valuable perspectives on the ad-
vantages and drawbacks of incorporating ChatGPT into their work processes using
semi-structured interviews. The qualitative data yielded five broad themes.

Theme 1: E�ciency and Productivity Gains

The central focus revolves around the notable enhancements in productivity and
time e�ciency achieved through the utilization of ChatGPT for refactoring jobs.
According to a developer’s observation:
“Very fast, less time-consuming,” while another highlighted how “It gives
a good explanation why we need to make that small and readable code.
Removing unnecessary code.”
This feedback suggests that the AI enables more e↵ective identification of areas that
are ready to be simplified. In addition, some participants highlighted significant en-
hancements in the speed of code analysis for improvements, as seen by the following
quotes:
“Faster to process something” and “ChatGPT is faster for small code
refactoring.”
This implies significant decreases in the time necessary for each refactoring, enabling
engineers to achieve more productivity in a shorter period. The increase in produc-
tivity is most noticeable when making simple improvements to the logical sequence
and eliminating redundant blocks of code. However, increases in velocity have sig-
nificant ramifications for the ability to refactor code more e�ciently.

Theme 2: Enhanced Code Simplicity and Readability

ChatGPT has been extensively recognized for its ability to enable developers to
create code structures that are clearer and easier to navigate. According to one
source:
“It gives a good explanation of why we need to make that small and
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Figure 6.14: Interview example quotes
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readable code.”
Explainability of this nature aids programmers in creating simplified logic flows
that adhere to recommended standards, such as the principle of single responsibil-
ity. Similarly, several participants observed significant enhancements in the general
maintainability of code as a result of AI-assisted refactoring. For example:
“If ChatGPT tells us exactly why this code is easy to understand and
runs faster.”
The phrase emphasizes the benefits in terms of both ideas and execution. There is a
general agreement that code improved under the direction of ChatGPT is more eas-
ily understood and maintained and can be built upon in the future. The pursuit of
eliminating superfluous elements and needless intricacy was frequently undertaken
as the act of ”removing unnecessary code” and “creating more elegant so-
lutions .” Therefore, the concept of simplicity was widely implemented.

Theme 3: Exposure to Alternative Refactoring Techniques

Utilizing ChatGPT also provided programmers with the opportunity to enhance
their conceptual toolkits, as several reported uncovering previously unexpected tech-
niques. According to one revelation: ”Definitely, it will help programmers
achieve more areas of discovery.” Furthermore, a di↵erent developer expressed
their appreciation for the recommendations of design patterns as a means of encap-
sulating logic, making a comment:
“Yes, it gives me a new way to solve problems.”
The creators’ strong desire to constantly improve their skills makes them inclined to
include ChatGPT’s varied suggestions in a favorable manner. The AI’s willingness
to explore di↵erent strategies indicates its ability to fulfill an instructional function
by preventing refactoring approaches from becoming stagnant or limited. Program-
mers are ready to evaluate new structural concepts for potentially better solutions.

Theme 4: Remaining Limitations and Challenges

Participants frequently expressed reservations about ChatGPT’s ability to fully un-
derstand the context and intention of code, despite their overall support. One
claimed that for more complex refactoring:
“I need a more complex problem to analyze that.”
Some individuals expressed their dissatisfaction with the di�culties of receiving er-
roneous results: “Sometimes it gives a false result, so I have to rephrase
my question several times to get the correct one.” This indicates that al-
though the AI is useful for basic recommendations, it cannot rival human judgment
when it comes to subtle evaluation. Similarly, other testimonials cautioned against
blindly following advice without thorough examination, due to the limitations of
technology in comprehending the subtleties of complicated program processes. Ac-
cording to one developer’s summary, the tool is:
“Good for refactoring simple code but not complex one.”
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Therefore, in order to achieve strong results, expectations need to be adjusted and
tailored to specific circumstances.

Theme 5: Recommendations for Targeted Usage

Based on the information provided, it is advisable to customize the use of Chat-
GPT to situations that align well with its capabilities. According to one source:
“It’s beneficial when we do not have any guide or know how to solve
problems.”
Highlighting its usefulness in situations where developers face a dearth of ideas or
need suggestions to encourage simplification. On the other hand, many people con-
sidered it unwise to use it on important systems or specialized calculators. Instead,
it is more suitable for obtaining recommendations on common data processing al-
gorithms. One developer determined that the suitability of the technology ”relies
on the requirements” and circumstances of projects.
Experts recommend strategically integrating ChatGPT to leverage its refactoring
acceleration and ideation stimulation. This involves selectively utilizing its capa-
bilities to fill gaps and optimize opportunities while avoiding any shortcomings in
business logic comprehension.
Experienced Java programmers observed significant enhancements in productivity,
e�ciency, and code quality by utilizing ChatGPT’s AI support for specific code re-
working assignments. The speed and extensive technical understanding of program-
mers enable them to produce more e�cient and easily understandable structures
at a faster pace. Nevertheless, it is not wise to rely exclusively on its recommen-
dations due to the limits of technology in fully comprehending program aim and
human needs. The deliberate utilization of targeted enhancements in specific areas
promises to optimize the acceleration of refactoring capacities, hence enhancing de-
veloper outcomes and ensuring code integrity.

6.2.3 Hypothesis test

To test these hypotheses, a mixed-method approach was adopted, incorporating both
quantitative and qualitative analyses. The quantitative data were collected through
pre-tests and post-tests, focusing on metrics such as response time, correctness of
programming tasks, and code quality indicators. Qualitative data were gathered
from post-interview questionnaires to obtain participants’ perceptions of ChatGPT’s
assistance in code refactoring.
H1: Influence of ChatGPT Usage on Response Time

My study’s findings provide concrete evidence supporting the hypothesis that Chat-
GPT usage influences the response time in code refactoring tasks. The response
times for pretest code refactoring tasks (without ChatGPT) compared to post-test
tasks (with ChatGPT) illustrate this impact. For instance, the minimum, maximum,
and mean response times significantly decreased across all tasks when participants
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used ChatGPT for refactoring. The reduction in standard deviation across these
tasks also indicates a more consistent response time among participants when as-
sisted by ChatGPT .
H2: Perceived Advantages of ChatGPT in Code Refactoring
Participants reported several advantages of using ChatGPT for code refactoring,
which aligns with the second hypothesis. These advantages include exposure to
alternative refactoring techniques and new ways to solve problems, suggesting an
increase in e�ciency, accuracy, and creativity in code improvements. These findings
highlight ChatGPT’s role not only as a tool for direct assistance but also as an
educational resource that introduces developers to new concepts and practices.
H3: Correlation Between ChatGPT Use and Code Quality
The correlation between ChatGPT use and improvements in code readability and
maintainability is substantiated by this study’s before-and-after analysis of refactor-
ing tasks. Examples from the results section show how ChatGPT helped streamline
conditional logic and add necessary validation checks, thereby enhancing the quality
and robustness of the code. This evidence supports the hypothesis that higher levels
of ChatGPT utilization result in substantial enhancements in code quality .
H4: Challenges in Using ChatGPT for Code Refactoring
While ChatGPT presents numerous benefits, this study also sheds light on the chal-
lenges faced by expert Java programmers, which supports the fourth hypothesis.
These challenges include di�culties in understanding context-specific programming
nuances and receiving erroneous results that require multiple queries to resolve.
Such insights emphasize the limitations of current AI tools in fully grasping the
complexities of software development and the importance of human oversight.

By integrating these findings from this thesis, we can see that the hypotheses are
well-supported by empirical evidence, o↵ering a nuanced understanding of Chat-
GPT’s role in code refactoring tasks. This detailed exploration not only validates
the proposed hypotheses but also contributes valuable insights into the practical
application and limitations of AI in software development.

6.3 Data Analysis and Findings

The participant demographics were as follows: the majority (64.3%) of the 14 par-
ticipants reported 1-2 years of Java programming experience, with a smaller propor-
tion having 6-8 years (21.4%) and 2-4 years (14.3%). This distribution suggests a
predominance of relatively newer programmers to Java, with a significant segment
possessing more substantial experience.
Regarding programming experience in larger software projects, 71.4% of partici-

pants have contributed to such projects for up to 10 years, indicating a group with
considerable practical experience. The data reflects a workforce competent in navi-
gating the complexities of software development in a professional context.
In terms of code refactoring, 42.9% of respondents have 1-2 years of experience,
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highlighting a group actively engaging in refining and optimizing code. The diversity
in refactoring experience, ranging from no experience to over 9 years, showcases a
broad spectrum of skills and adaptability among the participants.
All participants (100%) have a university background in programming or computer

science, with an equal split between those who took 1-2 and 2-4 Java-centric courses.
This academic foundation suggests a solid theoretical understanding of programming
principles among the respondents.

6.3.1 Self-assessment of Java Expertise

When self-assessing their Java expertise, a majority considered themselves neither
inexperienced nor experienced, indicating a moderate level of confidence in their
programming skills. This self-perception is critical in understanding the potential
learning curve and adaptability to new tools such as ChatGPT for code refactoring.

6.3.2 Utilization of ChatGPT

The usage frequency of ChatGPT varied, with a moderate level being the most
common. Specifically for code refactoring tasks, a substantial portion of respon-
dents indicated minimal to moderate usage, suggesting cautious integration of AI
assistance into their workflow.

6.3.3 Quantitative Analysis of Response Times

The quantitative analysis focused on the response times for both pretest and posttest
tasks. The mean times and standard deviations were calculated for each question,
revealing insights into the e�ciency gains and time savings associated with the use
of ChatGPT for code refactoring.

6.3.4 Qualitative Insights

Qualitative feedback underscored the e�ciency and productivity gains from using
ChatGPT, with enhancements in code simplicity and readability being particularly
valued. However, limitations in context comprehension by ChatGPT were noted,
emphasizing the tool’s utility in simpler refactoring tasks and the need for careful
validation of its suggestions.

6.3.5 Conclusions Drawn from Data

The analysis highlights the balanced perspective of Java programmers towards Chat-
GPT’s role in code refactoring—acknowledging its potential to streamline and en-
hance coding practices, while also recognizing its limitations and the need for judi-
cious application.
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Metric Minimum Maximum Lowest
Mean

Lowest
Std. Devi-
ation

Pretest
Time

61.44s 180s 98.6 24.35

Posttest
Time

26.69s 165.18s 49.83 19.49

Table 6.10: Summary of Java experiment in pretest and posttest

Figure 6.15: Code Refactoring: Pretest and Posttest Response Times

This summary captures the essence of our findings, indicating both the promise
and the challenges associated with leveraging ChatGPT in the code refactoring
process among Java programmers.Standard deviation measures the variability of
the data points around the mean. The pretest time has a higher standard deviation
(24.35) compared to the posttest time (19.49), indicating greater spread in pretest
time measurements. Overall, the analysis of performance indicates that while the
average time taken decreased from the pretest to the posttest phase, there was still
considerable variability in the time taken by participants. This variability could
be due to factors such as individual di↵erences in skill level, the complexity of the
tasks, or variations in environmental conditions during the experiment. Further
investigation may be needed to understand and address these sources of variability
for more consistent performance in future experiments.
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This section of the thesis synthesizes the experimental results, o↵ering an in-depth
analysis of ChatGPT’s e�cacy in supporting code refactoring tasks for expert Java
programmers. Our findings illuminate both the potential and limitations of integrat-
ing AI tools like ChatGPT within the software development workflow, specifically
in the realm of code refactoring.
Advantages: The study demonstrates that ChatGPT significantly aids in identi-

fying code smells and suggesting appropriate refactorings, leading to improved code
quality and readability. Participants noted the tool’s utility in o↵ering diverse refac-
toring options, which facilitated creative and e�cient problem-solving approaches.
This aligns with the broader aim of enhancing software maintainability without in-
troducing functional changes, underscoring ChatGPT’s potential to streamline the
refactoring process.
Limitations and Challenges: Despite its benefits, certain limitations were ev-

ident. ChatGPT sometimes proposed refactorings that lacked context awareness
or were inapplicable to specific project architectures. This highlights the impor-
tance of expert oversight in evaluating and implementing AI-generated refactorings.
Additionally, concerns regarding the tool’s integration into existing development
environments and workflows were raised, suggesting a need for more seamless and
customizable AI tool integration strategies.
The presence of minimal response times, notably in instances where they were

implausibly short, such as 3 seconds, suggests that some participants did not engage
with certain tasks as expected. This aspect of data collection highlights the need
for improved monitoring mechanisms in future experiments to ensure all tasks are
completed as intended, thereby enhancing data reliability.
Implications for Practice: Our findings suggest that while ChatGPT can be a

valuable asset in code refactoring, its optimal use requires balancing AI suggestions
with expert judgment. The study underscores the potential for AI to augment,
rather than replace, human expertise in software development.
Future Research Directions: The exploration into AI-assisted code refactor-

ing is nascent, with ample opportunities for further research. Future studies could
investigate the integration of AI tools like ChatGPT with other software develop-
ment processes or delve into the development of more context-aware AI refactoring
suggestions.
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7.1 Finding and implication

This section summarizes the key findings from the experiment involving expert Java
programmers using ChatGPT for code refactoring tasks and discusses the broader
implications of these results for both the field of software engineering and the de-
velopment of AI-assisted programming tools.

1.Key Findings: Participants were able to identify and address code smells more
e↵ectively with ChatGPT, resulting in a notable reduction in refactoring time. This
underscores ChatGPT’s potential to streamline the code review process by quickly
suggesting viable refactoring strategies.The use of ChatGPT led to enhancements in
code quality metrics such as readability, maintainability, and compliance with best
practices.
Participants found ChatGPT’s suggestions particularly useful for complex refactor-
ing tasks that required nuanced understanding of code structure and function.The
e↵ectiveness of ChatGPT’s assistance varied based on the complexity of the refactor-
ing task and the specificity of the programming context. While ChatGPT excelled at
common refactoring patterns, it was less e↵ective for highly specialized or context-
dependent refactorings.
Engaging with ChatGPT’s suggestions provided a learning opportunity for partic-
ipants, allowing them to explore new refactoring techniques and approaches. This
indicates the potential of AI-assisted tools to contribute to ongoing professional de-
velopment in software engineering.

2.Implications: These findings suggest that integrating AI-assisted tools like Chat-
GPT into the software development workflow can enhance e�ciency and code qual-
ity. However, successful integration requires careful consideration of tool limitations
and the development of best practices for interpreting and applying AI-generated
suggestions.The variability in ChatGPT’s e↵ectiveness highlights the importance of
continuing to refine AI models to better understand complex programming contexts
and support a wider range of refactoring tasks.
There’s a clear opportunity for the development of more sophisticated AI tools that
can adapt to the nuances of di↵erent programming languages and project require-
ments. The potential for AI-assisted tools to facilitate learning and skill development
in software engineering is significant. Educators and team leads might consider in-
corporating these tools into training programs and development processes to enhance
learning outcomes and professional growth.

3.Future Research Directions: Further research is needed to explore the inte-
gration of AI-assisted tools in diverse programming environments, the development
of customizable AI models for specific project needs, and the long-term impact of
AI assistance on software development practices and outcomes.
In conclusion, the experiment’s findings illustrate the substantial benefits and no-
table challenges of using ChatGPT for code refactoring, providing valuable insights
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for both practitioners and researchers in software engineering. These results o↵er a
promising outlook for the future of AI in programming, suggesting a paradigm shift
towards more collaborative human-AI coding processes.

7.1.1 Threats to validity

E↵orts were made to ensure the reliability of the findings, including the use of a
controlled experimental design and the selection of participants with verified exper-
tise in Java programming. However, the intrinsic limitations of ChatGPT’s current
capabilities and the potential for participant bias in self-reporting experiences ne-
cessitate cautious interpretation of the results.
The study’s focus on expert Java programmers and specific refactoring tasks may
limit the generalizability of the findings to other programming languages or devel-
oper expertise levels. Future research could broaden the scope to include a wider
range of programming contexts and developer demographics.
The experimental design aimed to accurately measure the impact of ChatGPT on

code refactoring e�ciency and e↵ectiveness. Nevertheless, the multifaceted nature
of code quality and the subjective aspects of code readability and maintainability
present challenges in quantifying the tool’s impact, indicating areas for methodolog-
ical refinement in future studies.
This broad discussion and analysis of validity aim to contextualize the study’s

findings within the larger discourse on AI’s role in software development, highlighting
both the promise and the challenges of integrating AI tools like ChatGPT into code
refactoring practices.

7.1.1.1 Internal validity

Internal validity refers to the extent to which a study can convincingly demonstrate a
cause-and-e↵ect relationship. In the context of this study on the impact of ChatGPT
on code refactoring e�ciency among expert Java programmers, e↵orts to ensure
internal validity include:
Controlled Experimental Design: By adopting a controlled design, the study

minimizes extraneous variables that could influence the results, thereby focusing
solely on the e↵ects of ChatGPT’s intervention. This includes setting consistent
task parameters and environments for all participants.
Selection of Qualified Participants: Choosing participants with verified exper-
tise in Java programming helps ensure that the data reflects the influence of the AI
tool rather than variations in individual skill levels. This selection criterion aims to
isolate the e↵ect of ChatGPT from other potential confounding factors.
Acknowledgment of Limitations: While the study is carefully designed, it rec-
ognizes the limitations inherent in ChatGPT’s capabilities and the potential biases
from participants self-reporting their experiences. This acknowledgment is crucial
as it points to the need for cautious interpretation of the findings, understanding
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that factors like participant bias and AI limitations could impact the results.

7.1.1.2 External validity

External validity pertains to the extent to which the findings of a study can be
generalized to other settings, populations, or times. In this study, the aspects influ-
encing external validity include:
Focus on Expert Java Programmers: The study’s results are derived from a
specific group of expert Java programmers working on designated refactoring tasks.
This specific focus might limit the generalizability of the findings to other groups,
such as novice programmers or experts in other programming languages.
Specific Refactoring Tasks: By concentrating on particular tasks, the study
might not fully capture how ChatGPT would perform across a broader range of
programming scenarios. This limitation highlights the potential narrow applicabil-
ity of the findings within the wider field of software development.
Potential for Broader Research: The study suggests that future research should
expand the scope to include a more diverse array of programming contexts and de-
veloper demographics. This recommendation is made to test whether the findings
hold true in di↵erent environments or with di↵erent types of programming chal-
lenges, which would enhance the external validity.

In summary, while the study is rigorous in its approach to internal validity, its
external validity is constrained by its focused participant group and task selection.
Future studies are encouraged to broaden the scope to enhance generalizability and
further understand the role of AI like ChatGPT in diverse software development
contexts.

7.1.1.3 Experimental Control and Participant Integrity

One potential threat to the validity of our study’s findings arises from the experi-
mental setup, where surveys were distributed via links and completed remotely by
participants. This method inherently limited our ability to monitor and control the
environment in which participants engaged with the survey. As a result, there are
several specific uncertainties that could impact the reliability and applicability of
our results:
Uncontrolled Environment: Participants completed the surveys in their own cho-
sen environments, which may vary significantly in terms of distractions, available
resources, and overall conduciveness to the tasks. This variability could influence
how e↵ectively participants were able to engage with and respond to the survey,
potentially a↵ecting their performance and our data’s consistency.
Usage of External Aids: The remote nature of the survey did not allow us to
monitor the use of external aids. Participants might have used additional resources,
such as consulting online information or using tools like ChatGPT, without it being
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explicitly part of the experimental design. This could lead to variations in the data
that do not solely reflect the participant’s independent capabilities or opinions.
Honesty and Motivation of Responses: The lack of direct observation and
real-time interaction may also a↵ect the honesty and motivation behind partici-
pant responses. The anonymous and remote setup could either lead to more candid
responses due to reduced pressure or to less engaged and thoughtful feedback, de-
pending on individual participant attitudes towards the survey.

To mitigate these issues, future research could consider incorporating a controlled
experimental environment, where participants complete the survey in a standardized
setting. Alternatively, employing software that limits external aid usage during the
survey or including mechanisms to verify the authenticity of participant responses
could also enhance the validity of the data collected.
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8 Conclusion and future work

This chapter provides a comprehensive explanation of the conclusion and future
work.

8.1 Conclusion

This study embarked on a journey to explore the integration of ChatGPT within
the Java code refactoring process, a critical aspect of software development aimed at
enhancing code quality without altering its functionality. Through a comprehensive
methodology that included experiments with expert Java programmers, we analyzed
ChatGPT’s impact on various facets of code refactoring tasks. Our findings revealed
that ChatGPT significantly aids in reducing the time required for code refactoring,
enhancing the detection of code smells, and improving the e↵ectiveness of suggested
refactorings.
ChatGPT’s strengths lie in its ability to provide instant, relevant suggestions and

its adaptability to various coding scenarios, which in turn, supports programmers in
achieving higher code quality and maintainability. However, the study also identified
limitations, such as occasional inaccuracies in ChatGPT’s suggestions and a learning
curve in e↵ectively integrating AI tools into the existing development workflow.
In conclusion, ChatGPT emerges as a valuable asset for expert Java programmers,

o↵ering substantial support in the code refactoring process. Its advantages not only
streamline the development process but also encourage a deeper understanding and
adoption of best practices in code quality and maintainability.

8.2 Future work

The promising results of this study pave the way for several avenues of future research
in the realm of AI-assisted software development:

• Future studies could investigate the applicability and e↵ectiveness of ChatGPT
in assisting with code refactoring in other programming languages, broadening
the understanding of AI’s versatility in software development.

• Research focusing on enhancing the integration of AI tools like ChatGPT
into more complex development environments could further streamline the
refactoring process and improve developer e�ciency.
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• Investigating the long-term e↵ects of integrating AI tools on programmers’
workflows, skill development, and adoption of best practices would provide
deeper insights into the transformative potential of AI in software develop-
ment.

• Developing specialized AI models tailored to address unique refactoring chal-
lenges in large-scale or legacy systems could o↵er more targeted support to
developers.

• As AI becomes more ingrained in software development, examining the ethical
considerations and security implications of AI-assisted code modifications will
be crucial to ensuring responsible and safe software engineering practices.

By addressing these areas, future research can continue to unlock the full poten-
tial of AI in enhancing software development processes, ultimately leading to more
e�cient, high-quality software solutions.

8.2.1 Proposed Enhancements

In light of the challenges encountered in this study, particularly due to remote sur-
vey completion and limited experimental control, future research could incorporate
several enhancements to improve validity and reliability.

• Controlled Environment: Conduct future surveys in a standardized loca-
tion to reduce environmental distractions and improve direct observation of
participant behavior.

• Monitoring Software and Guidelines: Implement software to limit the use
of external tools or resources, accompanied by clear guidelines on acceptable
behavior.

• Verification Mechanisms: Utilize verification mechanisms such as follow-up
questions to cross-check responses for honesty and consistency.

• Mixed-Methods Approach: Combine quantitative surveys with qualitative
interviews or focus groups to triangulate insights and improve reliability.

• Participant Feedback and Pretests: Test surveys with a pilot group to
refine questions and identify potential biases before full deployment.

These strategies can help minimize biases and threats to validity while providing
more robust insights for future studies.
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[35] Mens, Tom, and Tom Tourwé. ”A survey of software refactoring.” IEEE Trans-
actions on software engineering 30.2 (2004): 126-139.

[36] Tufano, Michele, et al. ”An empirical study on learning bug-fixing patches
in the wild via neural machine translation.” ACM Transactions on Software
Engineering and Methodology (TOSEM) 28.4 (2019): 1-29.

[37] Allamanis, Miltiadis, et al. ”A survey of machine learning for big code and
naturalness.” ACM Computing Surveys (CSUR) 51.4 (2018): 1-37.

[38] Beck, Kent. ”Using pattern languages for object-oriented programs.” OOPSLA-
87 workshop on the Specification and Design for Object-Oriented Programming.
1987.

[39] Murphy-Hill, Emerson, Chris Parnin, and Andrew P. Black. ”How we refactor,
and how we know it.” IEEE Transactions on Software Engineering 38.1 (2011):
5-18.

79



BIBLIOGRAPHY

[40] Foster, Stephen R., William G. Griswold, and Sorin Lerner. ”WitchDoctor: IDE
support for real-time auto-completion of refactorings.” 2012 34th international
conference on software engineering (icse). IEEE, 2012.

[41] Tufano, Rosalia, et al. ”Unveiling ChatGPT’s Usage in Open Source Projects:
A Mining-based Study.” arXiv preprint arXiv:2402.16480 (2024).

[42] Bacchelli, Alberto, and Christian Bird. ”Expectations, outcomes, and chal-
lenges of modern code review.” 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013.

[43] Beck, Kent, and Ward Cunningham. ”A laboratory for teaching object oriented
thinking.” ACM Sigplan Notices 24.10 (1989): 1-6.

[44] Contreras, Albert, Esther Guerra, and Juan de Lara. ”Towards an Extensible
Architecture for LLM-based Programming Assistants in IDEs.”

[45] Lemieux, Caroline, et al. ”Codamosa: Escaping coverage plateaus in test gen-
eration with pre-trained large language models.” 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE). IEEE, 2023.
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Appendix A: Additional Materials

This appendix provides additional resources and materials that support the research
findings discussed in the thesis. These resources are intended to o↵er readers further
insights and access to the raw data, code, and analyses used throughout the study.

A.1 Repository Overview

These materials are hosted on GitHub to facilitate transparency and reproducibility
of the research findings. Please note that all data related to study participants have
been anonymized to protect their privacy. The repository includes the following:

Repository Name: [ExpertJavaRefactoring-With-ChatGPT ]

Repository Link: GitHub Repository for Thesis
https://github.com/NishatTUC/ExpertJavaRefactoring-With-ChatGPT/tree/

main

• Raw Data: Containing the raw responses data with task completing time
during the study.

• Code Snippets: Java code snippets reviewed and refactored during the study.

• Survey Materials: Questionnaires and interview scripts used to gather qual-
itative data from participants.

A.2 Access Instructions

To access the materials in the GitHub repository:

1. Click on the link provided above.

2. Navigate through the repository using the directory structure outlined in the
README file.

3. Download individual files or clone the entire repository to your local machine
for further exploration.
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